The structure of plutonium(IV) oxide as hydrolysed clusters in aqueous suspensions

Christian Ekberg, a, Kristian Larsson, a Gunnar Skarnemark, a Arvid Ödegaard-Jensen a and Ingmar Persson b

a Nuclear Chemistry / Industrial materials recycling, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,

b Department of Chemistry, Swedish University of Agricultural Sciences, P.O.Box 7015, SE-750 07 Uppsala, Sweden.

Supporting Material
Figure S1. The fit and the individual contribution of the different scattering paths of the EXAFS data of crystalline plutonium(IV) oxide in contact with water. Solid thin line - experimental data, thick line - calculated model function using the parameters given in Table 1. Individual contributions: solid line (offset -8) - Pu-O single scattering (SS) (offset -8), Pu--Pu SS (offset -16), and Pu--O SS (offset -24).
Figure S2. The fit and the individual contribution of the different scattering paths of the EXAFS data of colloidal plutonium(IV) oxide, freshly prepared. Solid thin line - experimental data, thick line - calculated model function using the parameters given in Table 1. Individual contributions: solid line (offset -4) - Pu-O single scattering (SS) (offset -8) and Pu--Pu SS (offset -8).
Figure S3. The fit and the individual contribution of the different scattering paths of the EXAFS data of colloidal plutonium(IV) oxide, stored for five years. Solid thin line - experimental data, thick line - calculated model function using the parameters given in Table 1. Individual contributions: solid line (offset -3) - Pu-O single scattering (SS) (offset -8) and Pu--Pu SS (offset -7).
Figure S4. X-ray powder diffractogram of the aged PuO$_2$ colloid suspension.