Electronic supplementary information

A further step towards tuning the properties of metal-chalcogenide nanocapsules by replacing skeletal oxide by sulphide ligands

Christian Schäffer, Ana Maria Todea, Hartmut Bögge, Sébastien Floquet, Emmanuel Cadot, Vladimir S. Korenev, Vladimir P. Fedin, Pierre Gouzerh and Achim Müller
1. Preparation of the aqua ion dimer \([\text{Mo}^{V} \text{O}_2(\mu-\text{O})(\mu-\text{S})(\text{aq})]^2+\)

The aqua ion dimer \([\text{Mo}^{V} \text{O}_2(\mu-\text{O})(\mu-\text{S})(\text{aq})]^2+\) was prepared as described in the literature.\(^1\)

After a sample of \(\text{Na}_2[\text{Mo}_2\text{O}_3\text{S(cys)}_2] \cdot 4 \text{H}_2\text{O}\) (3.0 g, 4.8 mmol) was dissolved in 1 M hydrochloric acid (30 mL), the solution was stirred for ~30 min, filtered and then passed through a Sephadex G-10 column (diameter 3 cm, length 50 cm), using 1 M hydrochloric acid as eluent. The second brown-yellow fraction (~200 mL), which contained the aqua ion \([\text{Mo}_2\text{O}_3\text{S(aq)}]^2+\), was neutralized partially with aqueous 1 M NaOH solution (150 mL) and then evaporated under reduced pressure until a volume of ~20 mL was obtained. The precipitate of NaCl was removed by filtration and the red filtrate was used for the synthesis of 1 (see text).

2. Pore dimensions

Each of the 20 pores of \({\{(\text{M}^{VI})\text{Mo}^{VI}_3\}\}_2\{\text{Mo}^{V}_2\}_30\)-type capsules is delineated by a ring of alternating \{\text{Mo}^{V}_2\} units and \{\text{M}^{VI}\} centers including the corresponding O, S atoms. Their size is limited by the positions of the three bridging atoms belonging to the three \{\text{Mo}^{V}_2\} units. In case of 2, the bridging oxide and sulphide ligands are found disordered over two positions with half occupancy. Four different types of pores, \textit{i.e.} \{\text{W}_3\text{Mo}_6\text{O}_9\}, \{\text{W}_3\text{Mo}_6\text{O}_8\text{S}\}, \{\text{W}_3\text{Mo}_6\text{O}_7\text{S}_2\} and \{\text{W}_3\text{Mo}_6\text{O}_6\text{S}_3\}, are in principle possible, the two extreme cases being depicted in Fig. S1.

In these two cases the triangle spanned by the three bridging atoms (\(X = \text{S} \text{ or } \text{O}\)) is approximately equilateral and a simple expectable estimation of the openings of possible pore scenarios is obtained as follows: the distances from the centers of X to the those of the triangles is equal to the sum of the van der Waals radii of X (1.50 Å for O and 1.80 Å for S)\(^2\) and the formal pore opening radii. Though the observed disorder affects the found S…S and O…O distances (as well as the Mo-O and Mo-S bond lengths) it is noteworthy that the respective estimated opening diameters of \(\text{ca.} \ 3.8\ \text{Å} \) and \(2.2\ \text{Å}\) for the two extreme (hypothetical) \{\text{W}_3\text{Mo}_6\text{O}_9\} and \{\text{W}_3\text{Mo}_6\text{O}_6\text{S}_3\} pores in 2a are in reasonable agreement with the corresponding values of the \{\text{W}^{VI}_{72}\text{Mo}^{V}_{60}\}\)-type Keplerates with \{\text{Mo}^{V}_2\text{O}_2(\mu-\text{O})_2\} (\text{ca.} \ 3.5\ \text{Å}^3\) and \{\text{Mo}^{V}_2\text{O}_2(\mu-\text{S})_2\} (\text{ca.} \ 2.4\ \text{Å}^4\) linkers. The openings of the \{\text{W}_3\text{Mo}_6\text{O}_6\text{S}\}\- and \{\text{W}_3\text{Mo}_6\text{O}_7\text{S}_2\}\-type pores should lie in between.
Fig. S1 A rough estimate of possible pore sizes (approximate values in Å): Comparison of the {W$_3$Mo$_6$O$_8$S$_3$} (top) and {W$_3$Mo$_6$O$_9$} (bottom) rings/pores (the two possible extremes) in 2a not considering the consequences of the disorder of the bridging oxo and sulphido ligands (W green, Mo blue, O red, bridging O and S linker-type red and yellow, respectively, SO$_4^{2-}$ yellow tetrahedra).
3. IR spectroscopy

The IR spectra of 1 and 2 (Fig. S2) show the characteristic band pattern for the metal-oxide skeleton of the \{M^{VI}_{72}Mo^{V}_{60}\}-type Keplerates between 1000 and 400 cm\(^{-1}\), thus confirming the presence of the 12 pentagonal \{(W^{VI})W^{VI}_{5}\} units in an (approximate) icosahedral arrangement (for details see refs. 5 and 6). Additionally they show the characteristic features of (symmetrically) bridging acetate and sulphate ligands, respectively.\(^7\) The asymmetric and symmetric COO stretching modes are observed at 1537 and 1447 cm\(^{-1}\) in the spectrum in 1 while the characteristic band triplet based on the splitting of the triply-degenerate \(v_3\) stretching mode of \(SO_4^{2-}\) (caused by symmetry lowering from \(T_d\) to \(C_{2v}\)) is observed at 1189, 1134 and 1044 cm\(^{-1}\) in the spectrum of 2 (see ref. 8 for a related example). (Weak features between 1400 and 1550 cm\(^{-1}\) in the spectrum of 2 are assigned to vibrational bending modes of methylammonium cation.)

Regarding the characteristic absorption bands of the linkers in 1 and 2, it is worth noting that those caused by the asymmetric and symmetric Mo–O–Mo stretching modes are commonly observed at 735-765 and 430-480 cm\(^{-1}\) in dinuclear complexes with the \{Mo^{V}_{2}O_2(\mu-O)_2\} core; the corresponding linker stretching Mo–S–Mo modes are expected at ~460 and ~360 cm\(^{-1}\).\(^9\)–\(^11\) Correspondingly the spectra of both 1 and 2 show a fairly intense band at \textit{ca.} 715 cm\(^{-1}\) (see e.g. refs. 3, 4 and 12) which is consequently assigned to a Mo\(^{V}\)–O–Mo\(^{V}\) stretching mode; but no definite conclusion could be reached regarding the bands of the Mo\(^{V}\)–S–Mo\(^{V}\) stretching modes.
Fig. S2 IR spectra (KBr pellets) of compounds 1 (top) and 2 (bottom).
4. Raman spectroscopy

Fig. S3 Raman spectrum of an aqueous solution of 2 ($\lambda_{exc} = 785$ nm; see text for an explanation).
5. UV-Vis absorption spectroscopy

The electronic absorption spectra of all Keplerates of the type \(\{ \text{M}^{\text{VI}}_{72} \text{Mo}^{\text{V}}_{60} \} \) (M = Mo, W) in aqueous solution show an intense absorption band in the visible or near-UV region. The high intensity of these bands (> \(10^5 \text{ mol}^{-1} \text{ L cm}^{-1} \)) as well as the shift to higher energy upon substitution of W (\(\lambda_{\text{max}} = 375 \text{ nm} \))3 for Mo (\(\lambda_{\text{max}} = 450 \text{ nm} \))6,12 are consistent with an assignment to a charge transfer transition from the (bonding) 4d electrons of the \(\{ \text{Mo}^{\text{V}}_{2} \} \) linkers to the pentagonal units. Hypsochromic shifts observed upon substitution of the \(\{ \text{Mo}^{\text{V}}_{2} \text{O}_2(\mu-\text{O})(\mu-\text{S}) \} \) (Fig. S4) and \(\{ \text{Mo}^{\text{V}}_{2} \text{O}_2(\mu-\text{S})_2 \} \)4 linkers by the \(\{ \text{Mo}^{\text{V}}_{2} \text{O}_2(\mu-\text{O})_2 \} \) ones may reflect the weak contribution of bridging sulphide ligands to the Mo–Mo bonding.13

![Aqueous solution UV/Vis electronic absorption spectrum of 2.](image)

Fig. S4 Aqueous solution UV/Vis electronic absorption spectrum of 2.
5. References

