Electronic Supporting Information

Platinum(II) and platinum(IV) complexes stabilized by C4-bound dicarbenes

Vsevolod Khlebnikov, Marion Heckenroth, Helge Müller-Bunz and Martin Albrecht*

School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland

Figure S1. Aromatic region of \(^{1}H-^{13}C\) HMBC spectrum of 3 DMSO in DMSO-D_6.
Figure S2. Region of 1H NMR spectra of 2a recorded in a range of solvents depicting the difference in chemical shifts and multiplicity of the signals of imidazolium and methylene protons.

Figure S3. Region of 1H NMR spectra recorded in DMSO-D_6 for mixtures obtained from addition of Br$_2$ to 2a and PhICl$_2$ to 3a.
Figure S4. Time-dependent consumption of the initial product from 2b·DMSO and Br₂ in DMSO, 6b·κS-DMSO, during the isomerization to the O-bound isomer; the inset shows a first order fit.
<table>
<thead>
<tr>
<th></th>
<th>2a</th>
<th>2a'</th>
<th>3a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC no.</td>
<td>904842</td>
<td>904841</td>
<td>904840</td>
</tr>
<tr>
<td>Crystal size /mm(^{\text{-1}})</td>
<td>0.40 × 0.15 × 0.10</td>
<td>0.11 × 0.07 × 0.04</td>
<td>0.16 × 0.15 × 0.10</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C({15})H({24})Cl(_2)N(_4)Pt × 1.5 C(_2)H(_6)OS</td>
<td>C({17})H({30})BN(_4)OF(_4)SCl(_2)Pt</td>
<td>2.36 CH(_2)Cl(_2)</td>
</tr>
<tr>
<td>Fw</td>
<td>643.56</td>
<td>655.86</td>
<td>815.94</td>
</tr>
<tr>
<td>T /K</td>
<td>223(2)</td>
<td>200(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(_1)/c</td>
<td>P2(_1)/c (#14)</td>
<td>Pbca (#61)</td>
</tr>
<tr>
<td>Unit cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a /Å</td>
<td>7.1071(9)</td>
<td>11.7668(2)</td>
<td>14.1521(3)</td>
</tr>
<tr>
<td>b /Å</td>
<td>14.0822(12)</td>
<td>21.4564(3)</td>
<td>17.9528(4)</td>
</tr>
<tr>
<td>c /Å</td>
<td>28.851(4)</td>
<td>10.0029(2)</td>
<td>22.5774(6)</td>
</tr>
<tr>
<td>α /°</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β /°</td>
<td>95.917(16)</td>
<td>103.872(2)</td>
<td>90</td>
</tr>
<tr>
<td>γ /°</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Volume /Å(^{3})</td>
<td>2872.1(6)</td>
<td>2451.80(7)</td>
<td>5736.2(2)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>D(_{\text{c}})/g cm(^{-3})</td>
<td>1.488</td>
<td>1.777</td>
<td>1.890</td>
</tr>
<tr>
<td>μ /mm(^{-1})</td>
<td>5.196</td>
<td>5.963</td>
<td>8.131</td>
</tr>
<tr>
<td>No. total reflcns</td>
<td>20289</td>
<td>39691</td>
<td>52351</td>
</tr>
<tr>
<td>Unique reflecns</td>
<td>4923</td>
<td>5027</td>
<td>4890</td>
</tr>
<tr>
<td>R(_{\text{int}})</td>
<td>0.1067</td>
<td>0.0347</td>
<td>0.0460</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical</td>
<td>Analytical</td>
<td>Semi-empirical</td>
</tr>
<tr>
<td>Transmission range</td>
<td>0.450–0.819</td>
<td>0.624–0.834</td>
<td>0.653–1.000</td>
</tr>
<tr>
<td>No. parameters, restraints</td>
<td>149, 8</td>
<td>307, 0</td>
<td>260, 0</td>
</tr>
<tr>
<td>GOF</td>
<td>0.568</td>
<td>1.091</td>
<td>1.115</td>
</tr>
<tr>
<td>R(_1), wR(_2), I > 2σ(I) (^{a})</td>
<td>0.0351, 0.0596</td>
<td>0.0237, 0.0523</td>
<td>0.0325, 0.0767</td>
</tr>
<tr>
<td>R(_1), wR(_2), all data (^{a})</td>
<td>0.0844, 0.0647</td>
<td>0.0308, 0.0555</td>
<td>0.0395, 0.0797</td>
</tr>
<tr>
<td>Largest diff. hole, peak /e Å(^{-3})</td>
<td>−1.301, 0.998</td>
<td>−0.453, 1.223</td>
<td>−0.683, 1.246</td>
</tr>
</tbody>
</table>

\(^{a}\) R\(_1\) = Σ||F\(_{\text{O}}\)||−||F\(_{\text{C}}\)||/Σ||F\(_{\text{C}}\||; \ wR\(_2\) = \left(Σ(w(F\(_{\text{O}}^2}−F\(_{\text{C}}^2)^2)/Σ(w(F\(_{\text{O}}^2)^{1/2}\right)
Table S2. Crystallographic data for complexes 4, 5a, and 6a.

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5a</th>
<th>6a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC no.</td>
<td>904843</td>
<td>904839</td>
<td>904838</td>
</tr>
<tr>
<td>Crystal size /mm</td>
<td>0.40 × 0.30 × 0.20</td>
<td>0.28 × 0.18 × 0.17</td>
<td>0.26 × 0.18 × 0.17</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C${13}$H${20}$Cl$_2$N$_4$Pt × C$_2$H$_6$OS</td>
<td>C${15}$H${24}$N$_4$Cl$_4$Pt × C$_2$H$_6$OS × C$_2$H$_3$N</td>
<td>C${15}$H${24}$N$_4$Br$_4$Pt × C$_2$H$_3$N</td>
</tr>
<tr>
<td>Fw</td>
<td>576.45</td>
<td>716.45</td>
<td>881.94</td>
</tr>
<tr>
<td>T /K</td>
<td>193(2)</td>
<td>100(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>P2$_1$ (#4)</td>
<td>P2$_1$ (#4)</td>
</tr>
<tr>
<td>Unit cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a /Å</td>
<td>11.2290(8)</td>
<td>9.3908(2)</td>
<td>9.5992(2)</td>
</tr>
<tr>
<td>b /Å</td>
<td>15.8825(12)</td>
<td>13.8861(2)</td>
<td>14.1248(3)</td>
</tr>
<tr>
<td>c /Å</td>
<td>11.5964(8)</td>
<td>10.1824(2)</td>
<td>10.3387(2)</td>
</tr>
<tr>
<td>α /°</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β /°</td>
<td>90</td>
<td>90.069(2)</td>
<td>90.272(2)</td>
</tr>
<tr>
<td>γ /°</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Volume /Å3</td>
<td>2068.2(3)</td>
<td>1327.80(4)</td>
<td>1401.78(5)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D$_{calcd}$/g cm$^{-3}$</td>
<td>1.851</td>
<td>1.792</td>
<td>2.089</td>
</tr>
<tr>
<td>μ /mm$^{-1}$</td>
<td>7.154</td>
<td>5.786</td>
<td>10.779</td>
</tr>
<tr>
<td>No. total reflcns</td>
<td>15652</td>
<td>22108</td>
<td>24869</td>
</tr>
<tr>
<td>Unique refelections</td>
<td>2096</td>
<td>7023</td>
<td>6962</td>
</tr>
<tr>
<td>R$_{int}$</td>
<td>0.092</td>
<td>0.0384</td>
<td>0.0289</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical</td>
<td>Analytical</td>
<td>Analytical</td>
</tr>
<tr>
<td>Transmission range</td>
<td>0.133–0.215</td>
<td>0.377–0.495</td>
<td>0.173–0.305</td>
</tr>
<tr>
<td>No. parameters, restraints</td>
<td>123, 0</td>
<td>290, 1</td>
<td>261, 1</td>
</tr>
<tr>
<td>GOF</td>
<td>0.989</td>
<td>1.032</td>
<td>1.027</td>
</tr>
<tr>
<td>R$_1$, wR$_2$, I > 2σ(I) a</td>
<td>0.0326, 0.0706</td>
<td>0.0252, 0.0593</td>
<td>0.0331, 0.0832</td>
</tr>
<tr>
<td>R$_1$, wR$_2$, all data</td>
<td>0.0399, 0.0725</td>
<td>0.0270, 0.0604</td>
<td>0.0338, 0.0838</td>
</tr>
<tr>
<td>Largest diff. hole, peak /e Å$^{-3}$</td>
<td>–1.307, 3.261</td>
<td>–0.820, 1.021</td>
<td>–1.112, 1.453</td>
</tr>
</tbody>
</table>

a R$_1$ = Σ|F$_O$|–|F$_C$|/Σ|F$_O$|; wR$_2$ = [Σw(F$_O^2$−F$_C^2$)/Σ(w(F$_O^2$))]$^{1/2}$