Electronic Supplementary Information

Microwave assisted N-alkylation of amine functionalized crystal-like mesoporous phenylene-silica

Mirtha A. O. Lourenço, Renée Siegel, Luís Mafra and Paula Ferreira

Department of Materials & Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
*Corresponding authors: pcferreira@ua.pt, +351 234401419, Fax: +351 234401470

Table of Contents

1. Experimental - characterization procedure
2. Characterization of PMO materials
 Figure S1. X-ray diffraction patterns of PMO, NH₂-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.
 Table S1. Texture parameters of PMO, NH₂-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.
 Figure S2. TEM images of PMO, NH₂-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.
 Figure S3. -196 ºC nitrogen adsorption-desorption isotherms of PMO, NH₂-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.
 Figure S4. ²⁹Si MAS (left) and CP-MAS (right) NMR spectra of PMO, NH₂-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.
 Figure S5. FTIR (ATR) spectra of PMO, NH₂-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.
 Table S2. Elemental analyses of PMO, NH₂-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.
 Figure S6. TGA of PMO, NH₂-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.
1. Experimental - characterization

Transmission electron microscopy (TEM) images were recorded by a 200 kV Hitachi H8100 Instrument and by a 200 kV High Resolution (HR) and energy-filtered (EF) TEM JEOL 2200FS Instrument.

Powder X-ray diffraction (PXRD) data were collected with a Phillips X’Pert MPD diffractometer using Cu-Kα radiation.

Nitrogen adsorption-desorption isotherms were recorded at -196 ºC using a Gemini V 2.00 instrument model 2380. Functionalized PMO materials were dehydrated overnight at 150 ºC to an ultimate pressure of 1024 mbar and then cooled to room temperature prior to adsorption.

13C, 29Si and 15N NMR spectra were recorded using a double resonance MAS probe on a Bruker Avance III 400 spectrometer operating at 9.4 T. 13C cross-polarization magic-angle spinning (CP MAS) NMR spectra were collected using the following parameters: 4 μs 1H 90º pulse; contact time (CT): 1 ms; v_{1H}^H: 70 kHz and v_{1C}^C: 78 kHz for CT pulses; MAS rate (v_R): 8 kHz and recycle delay (RD): 4 s. TPPM decoupling during the acquisition of the 13C signal was employed using a pulse length of 4.5 μs (ca. 165º pulses) for the basic unit block. 29Si MAS NMR spectra were collected employing a 40º flip angle pulse; v_R: 5 kHz; RD: 60 s. 29Si CP MAS NMR spectra were acquired with a 4 μs 1H 90º pulse; CT: 8 ms, v_R: 5 kHz; RD: 5 s. 15N CP MAS NMR spectra were recorded using a 4 μs 1H 90º flip angle pulse; v_{1H}^H: 57.7 kHz and v_{1N}^N: 62.5 kHz for CT pulses; CT: 8 ms; v_R: 5 kHz and RD: 5 s. In both 29Si and 15N NMR experiments a CW decoupling rf field strength of 53 kHz was applied during the acquisition time. In all the CPMAS experiments, the 1H rf field strengths used during the CT pulse were ramped from 50% to 100% to improve CP stability.

The 13C and 29Si NMR spectra were quoted in ppm from trimethylsilane, while 15N NMR spectra were referenced against a solid sample of natural abundance L-glycine, a secondary reference standard with respect to nitromethane.

Thermogravimetric analysis (TGA) was carried out on a Shimadzu TGA-50 instrument with a program rate of 5 ºC min$^{-1}$ in air.
Fourier transform infrared (FTIR) was done in a FTIR Bruker Tensor 27 instrument with a Golden Gate ATR (Attenuated Total Reflectance). Mesoporous powders were dehydrated at 100 °C for 24 h before FTIR analysis. The FTIR spectra were recorded in transmittance mode. Elemental analysis was carried out in C.A.C.T.I. in the Vigo University.

2. Characterization PMO materials

Figure S1. X-ray diffraction patterns of PMO, NH$_2$-PMO, Alk-NH-PMO1 and Alk-NH-PMO2. The inset displays the magnified patterns in the 2θ region from 2.5 to 5.5°.
Table S1. Physical properties of PMO, NH₂-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(d_{100}/\text{nm})</th>
<th>(S_{BET}/\text{m}^2\text{ g}^{-1})</th>
<th>(V_P/\text{cm}^3\text{ g}^{-1})</th>
<th>(d_P/\text{nm})</th>
<th>(b/\text{nm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMO</td>
<td>4.48</td>
<td>782</td>
<td>0.63</td>
<td>3.55</td>
<td>1.62</td>
</tr>
<tr>
<td>NH₂-PMO</td>
<td>4.53</td>
<td>719</td>
<td>0.51</td>
<td>3.55</td>
<td>1.68</td>
</tr>
<tr>
<td>Alk-NH-PMO1</td>
<td>4.53</td>
<td>693</td>
<td>0.50</td>
<td>3.41</td>
<td>1.82</td>
</tr>
<tr>
<td>Alk-NH-PMO2</td>
<td>4.53</td>
<td>698</td>
<td>0.53</td>
<td>3.41</td>
<td>1.82</td>
</tr>
</tbody>
</table>

*aPore width obtained from the maximum on the BJH pore size distribution calculated on the basis of adsorption data. *bPore wall thickness calculated as \((2d_{100}/\sqrt{3} - d_P)\), where the first term is the unit cell parameter.

Figure S2. TEM micrographs of: a) PMO, b) NH₂-PMO, c) Alk-NH-PMO1 and d) Alk-NH-PMO2 (the inset displays a micrograph where the hexagonal arrangement of pores can be seen).
Figure S3. -196 °C N\textsubscript{2} isotherms of PMO (□ adsorption; ■ desorption), NH\textsubscript{2}-PMO (○ adsorption; ● desorption), Alk-NH-PMO1 (△ adsorption; ▲ desorption) and Alk-NH-PMO2 (◊ adsorption; desorption ♦).
Figure S4. 29Si MAS (left) and CP-MAS (right) NMR spectra of PMO, NH$_2$-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.
Figure S5. FTIR (ATR) spectra of PMO, NH$_2$-PMO, Alk-NH-PMO1 and Alk-NH-PMO2 in the range of 1200 - 4000 cm$^{-1}$ (C$_{ar}$ and C$_{al}$ despite for aromatic and aliphatic carbons, respectively).
Figure S6. TGA of PMO, NH₂-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.

Table S2. Elemental analyses of PMO, NH₂-PMO, Alk-NH-PMO1 and Alk-NH-PMO2.

<table>
<thead>
<tr>
<th>Sample</th>
<th>% N</th>
<th>% C</th>
<th>% H</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMO</td>
<td>0.10</td>
<td>38.89</td>
<td>2.75</td>
</tr>
<tr>
<td>NH₂-PMO</td>
<td>3.03</td>
<td>35.81</td>
<td>2.92</td>
</tr>
<tr>
<td>Alk-NH-PMO1</td>
<td>2.96</td>
<td>37.50</td>
<td>3.37</td>
</tr>
<tr>
<td>Alk-NH-PMO2</td>
<td>3.00</td>
<td>38.05</td>
<td>3.44</td>
</tr>
</tbody>
</table>