Effects of Al-based additives on the hydrogen storage performance of the Mg(NH$_2$)$_2$-2LiH system

Hujun Cao,abc Yao Zhang,a Jianhui Wang,a Zhitao Xiong,a Guotao Wu,a Jieshan Qiub and Ping Chena,d,

a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.

b Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.

c University of Chinese Academy of Sciences, Beijing 100049, China.

d International Institute for Carbon-Neutral Energy Research (I2CNER), 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395 JAPAN.

Supporting information

Fig. S1 XRD pattern of LiAlH$_4$, Li$_3$AlH$_6$, LiAl(NH$_2$)$_4$ and LiAl(NH)$_2$.
Fig. S2 FTIR spectra of LiAl(NH$_2$)$_4$ and LiAl(NH)$_2$.

Fig. S3 TG curve of LiAl(NH$_2$)$_4$, the inlet is FTIR spectrum of the LiAl(NH$_2$)$_4$ after TG.

Fig. S4 27Al MAS NMR spectra of AlN and Li$_3$AlH$_6$-doped sample after ball milling.
#1. Preparation of LiAl(NH)₂ by ball milling.

\[\text{LiAlH}_4 + \text{LiAl(NH)}_2 \rightarrow \text{LiAl(NH)}_2 + 4\text{H}_2 \]

150 r/min 15 hrs release 3.67 H₂

Purity=3.67/4*100%=92 %