A colorimetric detection of Pb$^{2+}$ by using sodium thiosulfate and hexadecyl thimethyl ammonium bromide modified gold nanoparticles

Yujie Zhang,a Yumin Leng,a Lijing Miao,a Junwei Xina and Aiguo Wua,

aKey Laboratory of Magnetic Materials and Devices, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China

*Corresponding author. Tel.: +86-574-86685039, Fax: +86-574-86685163, E-mail: aiguo@nimte.ac.cn
Fig. S1 (a) Effect of the concentration of Na$_2$S$_2$O$_3$ on the color of Au NPs solutions in the presence of 10 μM Pb$^{2+}$ ([Na$_2$S$_2$O$_3$]=0.4, 0.2, 0.1, 0.05, 0.025 M) (b) Effect of pH on the color of Au NPs solutions in the presence of 3 μM Pb$^{2+}$ (pH=8, 8.5, 9, 9.5, 10).
Fig. S2 (a) The corresponding photo images (b) UV-vis absorption spectra of samples with different concentrations of Pb$^{2+}$ (8, 10, 12, 15, 20, 25 μM).
Fig. S3 XPS data of Pb (a) and S (b).
Fig. S4 The photo images of CTAB-Au solutions in the presence of Pb$^{2+}$ with different concentrations (blank, 2 μM, 4 μM, sample, 6 μM, 8 μM).