Supporting information

μ-Hydroxyl Trinuclear Copper(II) Cluster: Reactivity and Unusual Formation in Three-Component Synthesis of 1,2,3-Triazoles in Aqueous Media

Yuan-Bo Cai, Lei Liang, Jing Zhang, Hao-Ling Sun, and Jun-Long Zhang

Table of Contents

1. UV-vis spectra of Cu-1 and Cu-6 ..2
2. Characterizations of μ-O(H) trinuclear copper(II) cluster (Cu-6): ESI-MS(negative) and FTIR spectra ...3
3. UV-vis spectra of trinuclear Cu(II) cluster Cu-75
4. GC detection of β-hydroxy benzyl azide6
5. Crystal data and structure refinement for Cu-1, Cu-5 and Cu-67
6. NMR spectra of catalysts and products10
7. ESI-MS spectra of catalysts and products25
1. UV-vis spectra of Cu-1 and Cu-6

![Graph](image)

Figure S1. UV-vis spectra of (a) μ-O(H) trinuclear copper(II) cluster (Cu-6) in aqueous solution with a concentration of 2.29×10^{-5} mol/L. Inset: A expanded spectra from 400 nm to 800, with a concentration of 2.29×10^{-4} mol/L. The λ_{max}/nm (ε/M^1•cm^{-1}) are 242 (91500), 270 (sh), 343 (10950), 564 (285); and (b) Cu-1 in aqueous solution. Inset: A expanded spectra from 400 nm to 800, with a concentration of 2.15×10^{-4} mol/L. The ε at 564 nm is 149 M^1•cm^{-1}.
2. Characterizations of μ-O(H) trinuclear copper(II) cluster (Cu-6): ESI-MS (negative) and FTIR spectra

μ-O(H) trinuclear copper(II) cluster (Cu-6)

Figure S2 ESI-MS (negative) spectra of μ-O(H) trinuclear copper(II) cluster (Cu-6). Insert are the structure and simulated spectrum.
FTIR spectrum of μ-O(H) trinuclear copper(II) cluster (Cu-6)

Figure S3. FTIR spectrum of μ-O(H) trinuclear copper(II) cluster (Cu-6). (KBr)
3. UV-vis spectra of trinuclear copper(II) cluster Cu-7

Figure S4. UV-vis spectra of nuclear copper(II) cluster Cu-7 in methanol.
4. GC detection of β-hydroxy benzyl azide

Gas chromatography was performed on an Agilent 7890A gas chromatography with FID detector, using a 30 m×0.25 mm2 Chiral G-TA capillary column.

Sample preparations: Cu-1 (0.03 mmol), NaN$_3$ (0.5 mmol), and styrene epoxide (0.5 mmol) was added to water (10 mL) and stirred at room temperature overnight. 1 mL of the suspension was extracted by ethyl acetate. Then 25 μL chlorobenzene was added as an internal standard. The solution was dried by anhydrous Na$_2$SO$_4$ and used for GC experiments.

GC conditions for measuring the enantiomers of β-hydroxy benzyl azide:
Inlet temperature: 250 °C
No split.
Step 1: 50 °C for 1 min.
Step 2: 70 °C for 10 min.
Step 3: 180 °C for 5 min.
Flow: 3.9 mL/min

![GC curve for β-hydroxy benzyl azide](image)

Figure S5. GC curve for β-hydroxy benzyl azide, the product of styrene epoxide and NaN$_3$ in aqueous solution in the presence of catalyst Cu-1. The integrated areas of two enantiomers are quite similar, which indicates that there is no enantiomeric excess for the products.
5. Crystal data and structure refinement for Cu-1.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>Cu-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C20 H29 Cu N2 Na2 O14.50 S2</td>
</tr>
<tr>
<td>Formula weight</td>
<td>703.09</td>
</tr>
<tr>
<td>Temperature</td>
<td>296(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Triclinic, P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 7.8998(4) Å, alpha = 103.382(4) deg. b = 11.5756(7) Å, beta = 94.177(4) deg. c = 16.6900(9) Å, gamma = 103.844(4) deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>1428.30(14) Å³</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>2, 1.635 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.013 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>724</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.10 x 0.06 x 0.04 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.52 to 27.75 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-10≤h≤10, -14≤k≤15, -21≤l≤21</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>12691 / 6590 [R(int) = 0.0460]</td>
</tr>
<tr>
<td>Completeness to theta = 27.75</td>
<td>97.7 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.8067 and 0.4012</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6590 / 0 / 436</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.121</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0762, wR2 = 0.2168</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0960, wR2 = 0.2273</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.500 and -0.758 e.Å⁻³</td>
</tr>
</tbody>
</table>
Crystal data and structure refinement for Cu-5.

Identification code Cu-5
Empirical formula C13 H22 Cu N2 O7 S
Formula weight 413.93
Temperature 296(2) K
Wavelength 0.71073 Å
Crystal system, space group Triclinic, P-1
Unit cell dimensions a = 9.4021(13) Å alpha = 65.210(2) deg. b = 9.6265(13) Å beta = 76.389(2) deg. c = 10.5993(14) Å gamma = 73.383(2) deg.
Volume 827.18(19) Å³
Z, Calculated density 2, 1.662 Mg/m³
Absorption coefficient 1.485 mm⁻¹
F(000) 430
Crystal size 0.20 x 0.18 x 0.10 mm
Theta range for data collection 2.28 to 27.58 deg.
Limiting indices -12 <= h <= 11, -12 <= k <= 11, -13 <= l <= 13
Reflections collected / unique 4890 / 3650 [R(int) = 0.0138]
Completeness to theta = 27.58 95.3 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.8657 and 0.7555
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 3650 / 6 / 286
Goodness-of-fit on F² 1.035
Final R indices [I>2sigma(I)] R1 = 0.0328, wR2 = 0.0837
R indices (all data) R1 = 0.0391, wR2 = 0.0872
Largest diff. peak and hole 0.502 and -0.368 e.Å⁻³
Crystal data and structure refinement for Cu-6.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>Cu-6</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C41 H66 Cu3 N6 O19 S3</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1233.80</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Trigonal, P3(1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 14.083(2) Å, b = 14.083(2) Å, c = 23.118(5) Å</td>
</tr>
<tr>
<td>Volume</td>
<td>3970.4(11) Å</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>3, 1.548 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.389 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1923</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.15 x 0.13 x 0.10 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.89 to 27.62 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-13<=h<=18, -18<=k<=13, -26<=l<=29</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>23778 / 11017 [R(int) = 0.0286]</td>
</tr>
<tr>
<td>Completeness to theta</td>
<td>99.4 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.8187 and 0.7996</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>11017 / 2 / 654</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.969</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0387, wR2 = 0.0970</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0525, wR2 = 0.1046</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.032(10)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.746 and -0.579 e Å⁻³</td>
</tr>
</tbody>
</table>
6. NMR spectra of catalysts and products
The above spectra is 1H NMR, and the below spectra is 13C NMR.
The above spectra is 1H NMR, and the below spectra is 13C NMR
The above spectra is 1H NMR, and the below spectra is 13C NMR.
The above spectra is 1H NMR, and the below spectra is 13C NMR.
The above spectra is 1H NMR, and the below spectra is 13C NMR.
The above spectra is 1H NMR, and the below spectra is 13C NMR.
The above spectra is 1H NMR, and the below spectra is 13C NMR.
The above spectra is 1H NMR, and the below spectra is 13C NMR.
The above spectra is 1H NMR, and the below spectra is 13C NMR.
The above spectra is 1H NMR, and the below spectra is 13C NMR.
The above spectra is 1H NMR, and the below spectra is 13C NMR.
The above spectra is 1H NMR, and the below spectra is 13C NMR
7. ESI-MS spectra of catalysts and products

![Chemical structure and ESI-MS spectrum diagram]
Cu-7

Peking University Mass Spectrometry Analysis Report

Analysis Info
Analysis Name: 11120546_20111202_00001.d Acquisition Date: 12/2/2011 4:36:34 PM
Sample: PbII(Cu) Instrument: Bruker Apex IV FTMS
Comment: ESI Positive Operator: Peking University

Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2013
Peking University Mass Spectrometry Sample Analysis Report

Analysis Info
Analysis Name: 10990270_20100820_000001.d
Sample: Quin-ethyl
Comment: ESI Positive

Acquisition Data: 2010/08/20 16:32:31 PM
Instrument: Thermo Finnigan FTMS
Operator: Peking University

Mass, mg / Formula / Score / Error (ppm) / Error (ppm) / Confidence / M Value
347.14608 / C20 H19 N4 O2 / 100.00 / 0.8 / 0.8 / 16.1 / 13.5 / awen
354.13224 / C20 H18 N4 O2a / 100.00 / 0.0 / 0.0 / 15.0 / 13.5 / awen
Peking University Mass Spectrometry Sample Analysis Report

Analysis Info
Analysis Name: 6001150201200010_00001.d
Sample: Chloro-Mes-White
Comment: ESI Positive
Acquisition Date: 02/06/2013 10:35:55 AM
Instrument: Bruker Apex II FTMS
Operator: Peking University

Bruker Compass DataAnalysis 4.0
Printed: 12/06/2013 5:26:23 PM
16
Peking University Mass Spectrometry Sample Analysis Report

Analysis Info
Analysis Name: 10090418_20100910_000001.d
Sample: Click-Oxide
Comment: ESI-Positive

Acquisition Date: 9/10/2012 2:51:12 PM
Instrument: Bruker Apex IV FTMS
Operator: Peking University

Chemical structure:

![Chemical structure image]

17

10090418_50_100_05_000001.d - rel5

Mass, eqz, # Formula, Score, arr [m/z], arr [ppm], m/z, rel. a ' Conf. N.Ratio
371.15111 1 C 21 H 27 N 4 O 3 100.00 377.0654 0.2 0.4 Total 13.5 even 66
595.2275 1 C 21 H 27 N 4 O 3 100.00 377.0654 0.2 0.4 Total 13.5 even 66

Bruker Compass Cell/Analyser 4.5
Printed: 9/10/2012 5:24:23 PM
Page 1 of 1