Supporting Information

Spectral Signature of a Ru(II, III, IV) Complex: A Combined Experimental and Theoretical Investigation

Jacques Bonvoisin1,*, Ilaria Ciofini2

1) CEMES, CNRS UPR 8011, Nanosciences Group, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, France.
2) Laboratoire d’Electrochimie, Chimie des Interfaces et Modélisation pour l’Energie, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris - Chimie-ParisTech, 11 rue P. et M. Curie, F-75231 Paris Cedex 05

- **Figure SI.1** Orbital energies (in a.u., orbitals from 192 to 200) and isodensity plots of relevant MOs (contour value 0.025 a.u.) computed for the native [Ru(III)(dbm)\textsubscript{2}(acac-TIPSA)]0 species.
- **Figure SI.2** Orbital energies (in a.u., orbitals from 192 to 200) and isodensity plots of relevant MOs (contour value 0.025 a.u.) computed for the triplet (S=1) state of the oxidized [Ru(IV)(dbm)\textsubscript{2}(acac-TIPSA)]+1 species.
- **Figure SI.3** Optimized structure for the triplet (most stable, left) and the singlet state of the oxidized (Ru(IV)) [Ru(IV)(dbm)\textsubscript{2}(acac-TIPSA)]+1 complex.
- **Figure SI.4**: Experimental normalized absorption spectra of reduced [Ru(II)(dbm)\textsubscript{2}(acac-TIPSA)]1- form (black line) together with the corresponding computed transition energies in gas phase (red line) and in DCM (blue line).
- **Figure SI.5** Experimental normalized absorption spectra of oxidized [Ru(IV)(dbm)\textsubscript{2}(acac-TIPSA)]+1 form (black line) together with the corresponding computed transition energies of [Ru(IV)(dbm)\textsubscript{2}(acac-TIPSA)]1\textsubscript{S=0} (red) and [Ru(IV)(dbm)\textsubscript{2}(acac-TIPSA)]1\textsubscript{S=1} (blue).
- **Figure SI.6** Experimental (black line, in DCM) absorption spectra of the oxidized (Ru(IV)) [Ru(IV)(dbm)\textsubscript{2}(acac-TIPSA)]+1 complex together with the corresponding computed vertical transition energies and simulated spectra for RuIV S=0 (red line)
Figure SI.1 Orbital energies (in a.u., orbitals from 192 to 200) and isodensity plots of relevant MOs (contour value 0.025 a.u.) computed for the native [Ru(III)(dbm)₃(acac-TIPSA)]⁰ species.
Figure SI.2 Orbital energies (in a.u., orbitals from 192 to 200) and isodensity plots of relevant MOs (contour value 0.025 a.u.) computed for the triplet (S=1) state of the oxidized [Ru(IV)(dbm)$_2$(acac-TIPSA)]$^{1+}$ species.
Figure SI.3 Optimized structure for the triplet (most stable, left) and the singlet state of the oxidized (Ru(IV)) [Ru(IV)(dbm)₂(acac-TIPSA)]⁺¹ complex.
Figure SI.4: Experimental normalized absorption spectra of reduced [Ru(II)(dbm)$_2$(acac-TIPSA)]$^{1-}$ form (black line) together with the corresponding computed transition energies in gas phase (red line) and in DCM (blue line)
Figure S1.5 Experimental normalized absorption spectra of oxidized [Ru(IV)(dbm)$_2$(acac-TIPSA)]$^+$ form (black line) together with the corresponding computed transition energies of [Ru(IV)(dbm)$_2$(acac-TIPSA)]$^{1+}_{S=0}$ (red) and [Ru(IV)(dbm)$_2$(acac-TIPSA)]^+_S (blue).
Figure SI.6 Experimental (black line, in DCM) absorption spectra of the oxidized (Ru(IV)) [Ru(IV)(dbm)$_2$(acac-TIPSA)]$^{1+}$ complex together with the corresponding computed vertical transition energies and simulated spectra for RuIV S=0 (red line)