Bridged bis(amidinate) lanthanide aryloxides: Syntheses, structures, and catalytic activity for addition of amines to carbodiimides

Jing Tu, Wenbo Li, Mingqiang Xue,* Yong Zhang, and Qi Shen*

Key Laboratory of Organic Synthesis of Jiangsu Province, Department of Chemistry and Chemical Engineering, Dushu Lake Campus, Soochow University, Suzhou 215123, People’s Republic of China

Supporting material

All manipulations and reactions were performed under a purified argon atmosphere using standard Schlenk techniques or glovebox techniques. Solvents were degassed and distilled from sodium benzophenone ketyl under argon prior to use. All nitriles and amines were predried, sublimed, recrystallized or redistilled before use. The IR spectra were recorded on a Magna-IR 550 spectrometer. Melting points were determined in sealed Ar-filled capillary tube, and uncorrected. 1H NMR and 13C NMR spectra were recorded on a Unity Inova-400 spectrometer. Chemical shifts (δ) were reported in ppm. Lanthanide analyses were performed by EDTA titration with a xylenol orange indicator and a hexamine buffer. Elemental analyses were performed by direct combustion using a Carlo-Erba EA 1110 instrument.

Procedures: General procedure for the synthesis of amidines from reaction of amines with nitriles catalyzed by 3 (Table 2, entry 3 as an example).

A 10 mL Schlenk flask under dried argon was charged with 3 (12.9 mg, 0.015 mmol). To the flask were added the aniline (PhNH$_2$) (0.27 ml, 10.96 M, 2.95 mmol), N, N-diisopropylcarbodiimide (iPrNCNiPr) (0.45 ml, 6.418 M, 2.95 mmol). The resulting mixture was stirred at room temperature or 60 °C for the for 0.25h. After the reaction was completed, the reaction mixture was hydrolyzed by water, extracted with dichloromethane (3×10 mL), dried over anhydrous Na$_2$SO$_4$, and filtered. Then the solvent was removed under reduced pressure, and the final products were further purified by recrystallization from n-hexane (0.6147 g, 95% yield).
Analytical data:

\[
\begin{array}{c}
\text{N-phenyl-}N', N''-\text{diisopropylguanidine (13):} \text{ Compound was obtained following the}\\ \text{procedure catalyzed by catalysts 3, isolated as a white solid in 99\% yield. Known}\\ \text{compound.}^1 \] \\
\text{1H NMR (CDCl}_3\text{): } \delta = 7.22 \text{ (m, 2 H), 6.93 \text{ (m, 1 H), 6.85 \text{ (d, } J = 7.6 \text{ Hz,} }\\ \text{2 H) (aromatic CH), 3.77 \text{ (br, 2 H), 3.61 \text{ (m, 2 H) (CH}_3\text{Pr}_2\text{), 1.16 \text{ (d, } J = 6.4 \text{ Hz, 12 H) (CH}_3\text{).} } \\
\text{13C NMR (CDCl}_3\text{): } \delta = 150.5, 150.4, 129.4, 123.7, 121.5, 43.6, 23.6.
\end{array}
\]

Figure S1 1H NMR spectrum of product 13

\[
\begin{array}{c}
\text{N-phenyl-}N', N''-\text{dicyclohexylguanidine (14):} \text{ Compound was obtained following}\\ \text{the procedure catalyzed by catalysts 3, isolated as a white solid in 99\% yield. Known}\\ \text{compound.}^2 \] \\
\text{1H NMR (CDCl}_3\text{): } \delta = 7.25 \text{ (m, 2 H), 6.93 \text{ (m, 1 H), 6.86 \text{ (d, } J = 8.0 \text{ Hz,} }\\ \text{2 H) (aromatic CH), 3.64 \text{ (br, 2 H), 3.42 \text{ (m, 2 H), 2.03-1.05 \text{ (m, 20 H) (Cy).} } } \\
\text{13C NMR (CDCl}_3\text{): } \delta = 150.7, 150.7, 129.5, 123.9, 121.6, 50.5, 34.1, 26.0, 25.2.
\end{array}
\]
Figure S2 1H NMR spectrum of product 14

![N-p-flurophenyl-N', N''-diisopropylguanidine](image)

N-p-fluorophenyl-N', N''-diisopropylguanidine (15): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 99% yield. Known compound.\(^3\) M.p.: 130-131 °C. 1H NMR (CDCl$_3$): $\delta = 6.93$ (m, 2 H), 6.76 (m, 2 H) (aromatic CH), 3.74 (br, 2 H), 3.52 (m, 2 H) (CHPr$_2$), 1.15 (d, $J = 6.0$ Hz, 12 H) (CH$_3$). 13C NMR (CDCl$_3$): $\delta = 148.0, 144.6, 141.8, 123.4, 122.5, 28.3, 24.2$.

Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2013
Figure S3 1H NMR spectrum of product 15

\[\text{N-p-fluorophenyl-N', N''-dicyclohexylguanidine (16): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 99\% yield. Known compound.}^3 \text{ M.p.: 168-169 °C. } ^1\text{H NMR (CDCl$_3$): } \delta = 6.92 (\text{m, 2 H}), 6.76 (\text{m, 2 H}) (\text{aromatic CH}), 3.59 (\text{br, 2 H}), 3.38 (\text{m, 2 H}), 1.99-1.03 (\text{m, 20 H}) (\text{Cy}). \]

\[^{13}\text{C NMR (CDCl$_3$): } \delta = 150.6, 124.9, 124.8, 116.1, 115.9, 50.4, 34.1, 25.9, 25.2. \]
Figure S4 \(^1\)H NMR spectrum of product 16

\[
\text{N\text{-}o\text{-}chlorophenyl\text{-}N', N''\text{-}diisopropylguanidine (17): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 93\% yield. Known compound.}^3 \text{ M.p.: 137-138 } ^\circ\text{C.} \text{\(^1\)H NMR (CDCl}_3\): } \delta = 7.34 (d, J = 8.0 \text{ Hz, 1 H}), 7.13 (m, 1 H), 6.87 (m, 2 H) (aromatic CH), 3.78 (br, 2 H), 3.48 (m, 2 H) (CHPr\text{\textsubscript{\text{i}2}}), 1.18 (m, 12 H) (CH\text{\textsubscript{3}}). \text{\(^{13}\)C NMR (CDCl}_3\): } \delta = 150.1, 147.2, 130.1, 128.5, 127.8, 125.5, 122.7, 43.6, 23.6.\]
Figure S5 1H NMR spectrum of product 17

N-o-chlorophenyl-N', N''-dicyclohexylguanidine (18): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 96% yield. Known compound. M.p.: 137-138 °C. 1H NMR (CDCl$_3$): δ = 7.34-7.33 (d, $J = 7.6$ Hz, 1 H), 7.15-7.11 (m, 1 H), 6.92-6.85 (m, 2 H) (aromatic CH), 3.55 (br, 2 H), 3.42 (m, 2 H), 2.05-1.06 (m, 20 H) (Cy). 13C NMR (CDCl$_3$): δ = 150.1, 147.6, 130.1, 128.7, 127.8, 125.6, 122.6, 50.5, 34.1, 26.0, 25.2.
Figure S6 1H NMR spectrum of product 18

$^N\text{N}_\text{H}$

^oN-methylphenyl-N', N''-diisopropylguanidine (19): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 90% yield. Known compound. M.p.: 124-125 °C. 1H NMR (CDCl$_3$): $\delta = 7.15$ (m, 1 H), 7.08 (d, $J = 7.6$ Hz, 1 H), 6.90-6.86 (m, 1 H), 6.78 (d, $J = 7.2$ Hz, 1 H) (aromatic CH), 3.76 (br, 2 H), 3.46 (br 2 H) (CH$_2$Pr$_2$), 2.14 (m, 3 H), 1.17-1.15 (m, 12 H) (CH$_3$). 13C NMR (CDCl$_3$): $\delta =$ 149.1, 148.6, 131.8, 130.6, 126.9, 123.4, 121.9, 43.4, 23.7, 18.4.
Figure S7 1H NMR spectrum of product 19

N-o-methylphenyl-N', N''-dicyclohexylguanidine (20): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 93% yield. Known compound. M.p.: 134-135 °C. 1H NMR (CDCl$_3$): $\delta = 6.95$-6.91 (m, 2 H), 6.80-6.76 (m, 2 H) (aromatic CH), 3.62 (br, 2 H), 3.40 (br, 2 H), 2.00 (m, 3 H), 1.97-1.03 (m, 20 H) (Cy). 13C NMR (CDCl$_3$): $\delta = 148.9$, 148.7, 131.9, 130.6, 126.8, 123.5, 121.9, 50.4, 34.2, 25.9, 25.2, 18.4.
Figure S8 1H NMR spectrum of product 20

N-o-methoxyphenyl-N', N''-diisopropylguanidine (21): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 92% yield. Known compound.1 1H NMR (CDCl$_3$): $\delta = 6.94$-6.86 (m, 4 H) (aromatic CH), 3.78 (m, 5 H), 3.55 (br, 2 H) (CH_2), 1.17-1.16 (m, 12 H) (CH$_3$). 13C NMR (CDCl$_3$): $\delta = 152.4, 150.7, 139.2, 124.7, 122.2, 121.3, 111.8, 55.6, 43.3, 23.4.$
Figure S9 1H NMR spectrum of product 21

N-o-methoxyphenyl-N', N''-dicyclohexylguanidine (22): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 98% yield. Known compound. M.p.: 122-123 °C. 1H NMR (CDCl$_3$): $\delta = 6.96$-6.85 (m, 4 H) (aromatic CH), 3.77 (m, 3 H), 3.60 (br, 2 H), 3.45 (br, 2 H), 2.02-1.03 (m, 20 H) (Cy).

13C NMR (CDCl$_3$): $\delta = 152.6$, 150.5, 139.3, 125.0, 122.4, 121.4, 111.9, 55.7, 50.4, 34.0, 25.9, 25.1.
Figure S10 1H NMR spectrum of product 22

N-p-methylphenyl-N', N''-diisopropylguanidine (23): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 99% yield. Known compound.\(^5\) M.p.: 155-156 °C. 1H NMR (CDCl$_3$): $\delta = 7.03$ (d, $J = 8.0$ Hz, 2 H), 6.72 (d, $J = 7.6$ Hz, 2 H) (aromatic CH), 3.73 (br, 2 H), 3.53 (m, 2 H) (CH$_{Pr_2}$), 2.26 (s, 3 H), 1.14-1.12 (m, 12 H) (CH$_3$). 13C NMR (CDCl$_3$): $\delta = 150.6$, 147.6, 130.7, 130.1, 123.5, 43.4, 23.6, 21.0.
Figure S11 1H NMR spectrum of product 23

N-p-chlorophenyl-N', N''-diisopropylguanidine (24): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 99% yield. Known compound.5 1H NMR (CDCl$_3$): $\delta = 7.21$ (d, $J = 8.4$ Hz, 2 H), 6.80 (d, $J = 8.8$ Hz, 2 H) (aromatic CH), 3.75 (br, 2 H), 3.61 (br, 2 H) (CHPr$_2$), 1.17-1.16 (m, 12 H) (CH_3). 13C NMR (CDCl$_3$): $\delta =$ 150.5, 149.2, 129.4, 126.4, 125.1, 43.5, 23.6.
Figure S12 1H NMR spectrum of product 24

$\text{N-}p\text{-bromophenyl-N', N''-diisopropylguanidine (25):}$ Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 99% yield. Known compound. 1H NMR (CDCl$_3$): $\delta = 7.40$ (m, 2 H), 6.89 (d, $J = 8.4$ Hz, 2 H) (aromatic CH), 3.74 (m, 2 H) (CHPr_2), 1.20-1.18 (m, 12 H) (CH_3). 13C NMR (CDCl$_3$): $\delta =$ 150.4, 149.7, 132.4, 125.6, 114.0, 43.5, 23.6.
Figure S13 1H NMR spectrum of product 25

$\text{H}_3\text{CO} - \begin{array}{c} \text{N} \\ \text{NH} \end{array} - \begin{array}{c} \text{N} \\ \text{NH} \end{array} \text{N-p-methoxyphenyl-} N', N'' - \text{diisopropylguanidine} (26)$: Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 95% yield. Known compound.1 1H NMR (CDCl$_3$): δ = 6.84 (s, 4 H) (aromatic CH), 3.77 (m, 7 H) (OC$_3$H$_7$ and CH$_2$Pr$_2$), 1.18-1.17 (m, 12 H) (CH$_3$). 13C NMR (CDCl$_3$): δ = 154.6, 150.8, 142.7, 124.2, 114.6, 55.4, 43.3, 23.3.
Figure S14 1H NMR spectrum of product 26

N- (1-naphthyl)- N', N''–diisopropylguanidine (27): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 98% yield. Known compound. 1H NMR (CDCl$_3$): δ = 8.08 (d, $J = 8.0$ Hz, 1 H), 7.78 (d, $J = 7.6$ Hz, 1 H), 7.45 (m, 4 H), 6.91 (d, $J = 7.2$ Hz, 1 H) (aromatic CH), 3.88 (br, 2 H), 3.63 (m, 2 H) ($CHPr_i^2$), 1.18 (m, 12 H) (CH$_3$). 13C NMR (CDCl$_3$): δ = 150.2, 147.1, 135.1, 129.9, 128.1, 126.8, 126.1, 125.0, 124.7, 121.7, 118.1, 43.6, 23.7.
Figure S15 1H NMR spectrum of product 27

N, N''-diisopropyl-N'-2, 6-diisopropylphenylguanidine (28): Compound was obtained following the procedure catalyzed by catalysts 3, isolated as a white solid in 80% yield. Known compound.1 1H NMR (CDCl$_3$): δ = 7.07 (d, J = 7.2 Hz, 2 H), 6.98-6.94 (m, 1 H) (aromatic CH), 4.19 (br, 2 H), 3.43-3.19 (m, 2 H), 3.11-3.04 (m, 2 H) (CH$_3$), 1.25-1.04 (m, 24 H) (CH$_3$). 13C NMR (CDCl$_3$): δ = **147.7, 144.3, 141.6, 123.2, 122.3, 43.5, 42.7, 28.0, 23.9**.
Figure S16 1H NMR spectrum of product 28

$\text{N, N'}\text{-diisopropylpyrrolidine-1-carboximidamide (29): Compound was obtained following the procedure catalyzed by catalysts 3. Colorless liquid. Yield: 95%}. \text{Known compound.}^4 \text{ }^1\text{H NMR (CDCl}_3\text{): } \delta = 3.38 \text{ (s, 2 H) } (\text{CH}_2\text{Pr}_2\text{)}, 3.26 \text{ (m, 4 H) } (\text{CH}_2\text{)}, 1.80 \text{ (s, 4 H) } (\text{CH}_2\text{)}, 1.11 \text{ (m, 12 H) } (\text{CH}_3\text{)}. \text{ }^{13}\text{C NMR (CDCl}_3\text{): } \delta = 153.7, 47.9, 43.6, 26.3, 24.8.
N, N’-diisopropylpiperidine-1-carboximidamide (30): Compound was obtained following the procedure catalyzed by catalysts 3. Colorless liquid. Yield: 92%. Known compound.\(^1\) \(^1\)H NMR (CDCl\(_3\)): \(\delta = 3.36\) (m, 2 H) (\(\text{CHPr}_2\)), 3.04 (br, 4 H) (\(\text{CH}_2\)), 1.52 (br, 6 H) (\(\text{CH}_2\)), 1.09 (m, 12 H) (\(\text{CH}_3\)). \(^{13}\)C NMR (CDCl\(_3\)): \(\delta = 156.7, 49.1, 46.6, 26.0, 24.9, 24.0\).
1H NMR (CDCl₃): $\delta = 3.69-3.67$ (m, 4 H) ($CHPr_2$ and CH_2), 3.42-3.39 (m, 1 H), 3.32-3.29 (m, 1 H) (CH_2), 3.08-3.06 (m, 4 H) (CH_2), 1.14-1.06 (m, 12 H) (CH_3). 13C NMR (CDCl₃): $\delta = 155.5, 67.3, 48.9, 47.4, 46.6, 24.0, 23.8$.
Figure S19: 1H NMR spectrum of product 31

The ORTEP drawing of the complexes 1, 2, 4-5 and 9 (Figure S20-S24).

Figure S20: ORTEP diagram of the molecular structure of 1. Thermal ellipsoids are drawn at 30\% probability level. All hydrogen atoms are omitted for clarity.
Figure S21 ORTEP diagram of the molecular structure of 2. Thermal ellipsoids are drawn at 30 % probability level. All hydrogen atoms are omitted for clarity.

Figure S22 ORTEP diagram of the molecular structure of 4. Thermal ellipsoids are drawn at 30 % probability level. All hydrogen atoms are omitted for clarity.
Figure S23 ORTEP diagram of the molecular structure of 5. Thermal ellipsoids are drawn at 30 % probability level. All hydrogen atoms are omitted for clarity.

Figure S24 ORTEP diagram of the molecular structure of 9. Thermal ellipsoids are drawn at 30 % probability level. All hydrogen atoms are omitted for clarity.

General procedure for the NMR tube reaction of 3 with PhNH₂ and iPrNCNiPr.

i) In the glovebox, a J. Young valve NMR tube was charged with a solution of 3
(10.3 mg, 0.0125 mmol) in d_8-THF (0.1 mL), a certain amount of aniline (1.14 uL, 10.96 M, 0.0125 mmol) in C$_6$D$_6$ (0.4 mL) was added to the tube. The tube was taken outside the glovebox and the reaction mixture was stirred at room temperature, which was easily monitored by 1H NMR spectroscopy (Figure S25 in 15 min and Figure S26 in 2.5 h).

ii) In the glovebox, a J. Young valve NMR tube was charged with a solution of 3 (14.0 mg, 0.0170 mmol) in d_8-THF (0.1 mL), then a certain amount of aniline (1.55 uL, 10.96 M, 0.0170 mmol) and N, N'-diisopropylcarbodiimide (2.65 uL, 6.418M, 0.0170 mmol) in C$_6$D$_6$ (0.5 mL) was added to the tube. The tube was taken outside the glovebox and the reaction mixture was stirred at room temperature, which was easily monitored by 1H NMR spectroscopy (Figure S27 in 15 min and Figure S28 in 20h).

Figure S25 1H NMR spectrum of the reaction of 3 with 1 equiv of PhNH$_2$ in the mixture of C$_6$D$_6$ and d_8-THF at room temperature in 15 minutes.
Figure S26 1H NMR spectrum of the reaction of 3 with 1 equiv of PhNH$_2$ in the mixture of C$_6$D$_6$ and d_8-THF at room temperature in 2.5h.

Figure S27 1H NMR spectrum of the reaction of 3 with 1 equiv of PhNH$_2$ and iPrNCNiPr in the mixture of C$_6$D$_6$ and d_8-THF at room temperature in 15 minutes.
Figure S28 1H NMR spectrum of the reaction of 3 with 1 equiv of PhNH$_2$ and iPrNCN/iPr in the mixture of C$_6$D$_6$ and d$_8$-THF at room temperature in 20h.

Figure S29 1H NMR spectrum of complex 11 in C$_6$D$_6$.
References

