Chiral MOP-phosphonite ligands: synthesis, characterisation and interconversion of η¹,η⁶-(σ-P, π-arene) chelated rhodium(I) complexes

Supporting Information

Arne Ficks, Ross W. Harrington and Lee J. Higham*

School of Chemistry, Bedson Building, Newcastle University,
Newcastle upon Tyne, NE1 7RU, UK; *Email: lee.higham@newcastle.ac.uk

Table of Contents

Table of Contents 1

1 General Supporting Information 2

2 Experimental Procedures and Analytical Data 6

2.1 General Considerations 6
2.2 Chemical Analysis 6
2.3 [RhCl(2a)(η⁴-cod)] (3a) 8
2.4 [RhCl(2b)(η⁴-cod)] (3b) 10
2.5 [Rh(2a)₂]BF₄ (4a) 12
2.6 [Rh(2b)₂]BF₄ (4b) 14
2.7 [Rh(OMe-MOP)₂]BF₄ (5) 16
2.8 [IrCl(2a)(η⁴-cod)] (6a) 18
2.9 [IrCl(2b)(η⁴-cod)] (6b) 20
2.10 [Ir(2a)₂(η⁴-cod)]BF₄ (7a) 22
2.11 Asymmetric Addition of Phenylboronic Acid to 1-Naphthaldehyde 24

References 24
1 General Supporting Information

Table S1: Selected 13C NMR resonances of 4a and 5.

<table>
<thead>
<tr>
<th></th>
<th>4a</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13C(η₁,η₆) [ppm]a</td>
<td>13C(η₁) [ppm]a</td>
</tr>
<tr>
<td>C1'</td>
<td>100.5</td>
<td>121.9</td>
</tr>
<tr>
<td>C2'</td>
<td>149.1</td>
<td>153.8</td>
</tr>
<tr>
<td>C3'</td>
<td>87.5</td>
<td>114.2</td>
</tr>
<tr>
<td>C4'</td>
<td>95.8</td>
<td>128.1</td>
</tr>
<tr>
<td>C10'</td>
<td>112.8</td>
<td>128.2</td>
</tr>
<tr>
<td>C9'</td>
<td>118.7</td>
<td>134.6</td>
</tr>
</tbody>
</table>

a Solution NMR analysis (126 MHz, CD$_2$Cl$_2$, 21 °C).

31P NMR

1$J_{Rh} = 290$ Hz
1$J_{Rh} = 300$ Hz

$[\text{Rh(2a)}(\text{cod})\text{Cl}] (3a)$
1$J_{Rh} = 223$ Hz

$[\text{Rh(2a)}_2\text{BF}_4] (4a)$
2$J_{P} = 22.3$ Hz

31P NMR

1$J_{Rh} = 277$ Hz
1$J_{Rh} = 309$ Hz

$[\text{Rh(2b)}(\text{cod})\text{Cl}] (3b)$
1$J_{Rh} = 224$ Hz

$[\text{Rh(2b)}_2\text{BF}_4] (4b)$
2$J_{P} = 23.5$ Hz

Fig. S1: 31P NMR (202 MHz) spectra of 3a,b and 4a,b. Note that in the case of 4a,b, coupling to the hydrogen atoms in 3-position of the ligands is also resolved in the spectra.
Fig. S2: Section of the 13C–1H HSQC spectrum of 4b in CD$_2$Cl$_2$ at 21 °C using a 400 MHz spectrometer. Metal coordinated carbons (labelled B) are shifted to higher field compared to their non-coordinated counterparts (labelled A).

Fig. S3: Section of the 13C–1H HMBC spectrum of 4b in CD$_2$Cl$_2$ at 21 °C using a 400 MHz spectrometer.
Fig. S4: Section of the 1H-NOESY spectrum of 4b in CD$_2$Cl$_2$ at −50 °C. Positive NOE correlations are shown in red; exchange was not observed at this temperature. The spectrum was acquired with 2048 × 512 data points and a spectral width of 9 ppm using a 500 MHz spectrometer with a mixing time of 500 ms.

Fig. S5: Structure of 4a based on NOE correlations in the 1H-NOESY NMR. The η^1 ligand is coined A, the η^1,η^5-(σ-P, π-arene) ligand is coined B. Selected NOE contacts: H18A–H18B, H13a–OCH$_3$$_B$, H3a–H13A, H14B–H13B, H18A–H18B, H18B–H18B.
Fig. S6: Dynamic behaviour observed in solution for 4b (arrows). The η¹ ligand is labelled A, the η¹,η⁶-(σ-P, π-arene) ligand is labelled B. Selected NOE contacts: H13'B–OCH₃, H3'B–H13'B, H3'B–H13'A, H4'B–H8'A, H18'B–H18'B, H18'A–H18'A, H13'A–H6'B.

The Eyring equation relates the rate constant k and the activation free energy ΔG^\ddagger. The most common form of the Eyring equation is:

$$k = \frac{\kappa T}{h} \cdot e^{-\Delta G^\ddagger/RT}$$

(1)

where κ is the Boltzmann constant, h is Planck’s constant, T is the temperature in Kelvin and R is the universal gas constant. The equation can be rewritten as:

$$\Delta G^\ddagger = -\ln \left(\frac{k h}{\kappa T} \right) RT$$

(2)

Fig. S7: Structure of 7a based on NMR and HRMS analysis.
2 Experimental Procedures and Analytical Data

2.1 General Considerations

All air and/or water sensitive reactions were performed under a nitrogen atmosphere using standard Schlenk line techniques. Tetrahydrofuran and dichloromethane were dried over sodium/benzophenone and calcium hydride respectively, and distilled prior to use. MOP-phosphonite ligands 2a,b were synthesised according to literature procedures. All other chemicals were used as purchased without further purification.

2.2 Chemical Analysis

General Procedures. Infrared spectra were recorded on a Varian 800 FT-IR spectrometer. Mass spectrometry was carried out by the EPSRC National Mass Spectrometry Service Centre Swansea. Analytical high performance liquid chromatography (HPLC) was performed on a Varian Pro Star HPLC equipped with a variable wavelength detector.

X-ray Diffraction. All data were collected on an Oxford Diffraction Gemini A Ultra diffractometer at 150 K, using Mo Kα (λ = 0.71073 Å; 3a and 6a), or Cu Kα (λ = 1.54178 Å; 4b) radiation. Semi-empirical absorption corrections were applied based on symmetry-equivalent and repeated reflections. Structures were solved by direct methods and refined on all unique F^2 values, with anisotropic non-H atoms and constrained riding isotropic H atoms. CrysAlisPro software was used for data collection, integration, and absorption corrections. Structure solution, refinement, and graphics were made with the SHELXTL program. The disordered dichloromethane solvent molecule in the asymmetric unit of 6a was treated using the PLATON/SQUEEZE routine. A summary of key crystallographic experimental information is provided in Table S2.

NMR Spectroscopy. 1H NMR, 11B{1H} NMR, 13C{1H} NMR, 19F NMR, and 31P{1H} NMR spectra were recorded on a JEOL Lambda 500 (1H 500.16 MHz) or JEOL ECS-400 (1H 399.78 MHz) spectrometer at room temperature (21°C) if not otherwise stated, using the indicated solvent as internal reference. Two-dimensional NMR experiments (COSY, NOESY, HSQC, HMBC) were used for the assignment of proton and carbon resonances; the labelling scheme is shown in Fig. S8. Full range NOESY spectra were acquired with 512 × 1024 data points and a spectral width of 9.0 ppm; mixing times were chosen between 10 and 500 ms. For the measurement of exchange rate constants in 4a,b the proton resonances of the methoxy group were used. Peak volumes were determined manually from the NOESY spectrum using MestReNova 8, and the rate constants were calculated with an estimated error of 10% using EXSYCalc.
Table S2: Summary of X-Ray Crystallographic Data for 3a, 4b and 6a.

<table>
<thead>
<tr>
<th></th>
<th>3a</th>
<th>4b</th>
<th>6a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₂₀H₈₇ClO₄PRh</td>
<td>C₉₀H₁₇₁BF₄O₂P₂Rh</td>
<td>C₅₀H₄₁Cl₃IrO₃P</td>
</tr>
<tr>
<td>formula wt</td>
<td>919.25</td>
<td>1535.15</td>
<td>1019.35</td>
</tr>
<tr>
<td>cryst syst</td>
<td>orthorhombic</td>
<td>orthorhombic</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>space group</td>
<td>P2₁2₁2₁</td>
<td>P2₁2₁2₁</td>
<td>P2₁2₁2₁</td>
</tr>
<tr>
<td>a, Å; α, deg</td>
<td>9.5919(3); 90</td>
<td>14.0434(4); 90</td>
<td>9.3945(2); 90</td>
</tr>
<tr>
<td>b, Å; β, deg</td>
<td>19.2348(5); 90</td>
<td>20.3321(6); 90</td>
<td>19.2373(5); 90</td>
</tr>
<tr>
<td>c, Å; γ, deg</td>
<td>23.6141(6); 90</td>
<td>25.7605(6); 90</td>
<td>23.8082(5); 90</td>
</tr>
<tr>
<td>V, Å³</td>
<td>4356.8(2)</td>
<td>7355.4(3)</td>
<td>4302.73(17)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ρcalc, g cm⁻³</td>
<td>1.401</td>
<td>1.386</td>
<td>1.574</td>
</tr>
<tr>
<td>μ, mm⁻¹</td>
<td>0.537</td>
<td>2.864</td>
<td>3.369</td>
</tr>
<tr>
<td>F(000)</td>
<td>1904</td>
<td>3176</td>
<td>2032</td>
</tr>
<tr>
<td>Tmin/Tmax</td>
<td>0.85566/1.00000</td>
<td>0.71860/1.00000</td>
<td>0.4314/0.5522</td>
</tr>
<tr>
<td>hkl range</td>
<td>‒11 to 12, ‒25 to 24, ‒24 to 31</td>
<td>‒14 to 14, ‒21 to 21, ‒27 to 27</td>
<td>‒11 to 12, ‒24 to 20, ‒31 to 28</td>
</tr>
<tr>
<td>θ range, deg</td>
<td>3.0 to 28.5</td>
<td>1.7 to 62.4</td>
<td>3.0 to 28.6</td>
</tr>
<tr>
<td>no. of meas rflns</td>
<td>25484</td>
<td>19157</td>
<td>24836</td>
</tr>
<tr>
<td>no. of unique rflns (Rint)</td>
<td>9385 (0.0321)</td>
<td>8935 (0.0542)</td>
<td>9076 (0.0256)</td>
</tr>
<tr>
<td>no. of obsd rflns, I > 2σ(I)</td>
<td>8683</td>
<td>8181</td>
<td>8788</td>
</tr>
<tr>
<td>refined params/restraints</td>
<td>542/0</td>
<td>961/0</td>
<td>496/0</td>
</tr>
<tr>
<td>goodness of fit</td>
<td>1.081</td>
<td>1.027</td>
<td>1.075</td>
</tr>
<tr>
<td>Abs. structure param.</td>
<td>‒0.03(2)</td>
<td>‒0.037(7)</td>
<td>‒0.009(4)</td>
</tr>
<tr>
<td>R1/wR2 (I > 2σ(I))</td>
<td>0.0330/0.0757</td>
<td>0.0401/0.0986</td>
<td>0.0218/0.0562</td>
</tr>
<tr>
<td>R1/wR2 (all data)</td>
<td>0.0388/0.0795</td>
<td>0.0461/0.1031</td>
<td>0.0234/0.0573</td>
</tr>
<tr>
<td>resid electron dens, e Å⁻³</td>
<td>0.74/–0.45</td>
<td>0.80/–0.50</td>
<td>0.84/–0.91</td>
</tr>
</tbody>
</table>

Fig. S8: Numbering scheme used in this study.
2.3 [RhCl(2a)(η⁴-cod)] (3a)

2a (21.0 mg, 35.0 μmol) and [Rh(η⁴-cod)Cl]₂ (8.6 mg, 17.5 μmol) were dissolved in dichloromethane (1 mL) and stirred for 30 minutes. The solution was filtered and layered with diethyl ether. Dark orange crystals suitable for X-ray analysis were formed overnight.

¹H NMR (500 MHz, CD₂Cl₂): δ = 8.29 (d, ³J_HH = 8.8 Hz, 1H, H13), 8.21 (d, ³J_HH = 8.3 Hz, 1H, H15), 7.98 (d, ³J_HH = 8.2 Hz, 1H, H5'), 7.86 (m, 2H, H3/H4/H14'), 7.73-7.65 (m, 3H, H3/H4/H14'), 7.60 (d, ³J_HH = 9.1 Hz, 1H, H3'), 7.52-7.48 (m, 2H, H6/H16), 7.46-7.39 (m, 4H, H16'/H18/H18'/H6'), 7.33-7.29 (m, 2H, H17/H17'), 7.26-7.21 (m, 2H, H7'/H7), 7.18 (d, ³J_HH = 8.8 Hz, 1H, H8'), 7.16 (d, ³J_HH = 8.8 Hz, 1H, H13'), 6.92 (d, ³J_HH = 8.7 Hz, 1H, H8), 5.31 (br s, 1H, cod-C), 4.26 (br s, 1H, cod-C), 3.95 (s, 3H, OC), 2.69 (br s, 1H, cod-C), 2.49 (br s, 1H, cod-C), 1.88 (m, 1H, cod-C), 1.50 (m, 4H, cod-C), 1.32 (m, 1H, cod-C), 1.21 (m, 1H, cod-C), 1.13 (m, 1H, cod-C) ppm.

¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ = 155.9 (C'), 150.0 (dd, ²J_CP = 5.4 Hz, C12), 149.8 (dd, ²J_CP = 12.6 Hz, C12'), 140.5 (d, ²J_CP = 24.6 Hz, C1), 135.1 (C9), 134.5 (C9'), 133.3 (d, ¹J_CP = 11.2 Hz, C2), 132.4 (m, C19/19'), 131.8 (C20), 131.5 (C4'), 131.4 (C20'), 130.2 (C14), 129.9 (C14'), 129.8 (C8'), 129.4 (C10'), 128.5 (C15'), 128.4 (C15), 128.2 (C5), 127.8 (C6), 127.2 (C5'), 126.8 (C18), 126.7 (C4/C18), 126.6 (C7), 126.5 (C7'/C8), 126.3 (C17), 126.2 (C17'), 125.5 (d, ²J_CP = 2.5 Hz, C3), 125.4 (C16), 125.2 (C16'), 124.3 (d, ³J_CP = 3.6 Hz, C11), 124.3 (C6'), 124.1 (d, ³J_CP = 2.5 Hz, C13), 123.4 (d, ³J_CP = 2.5 Hz, C11'), 121.7 (C13'), 119.9 (d, ³J_CP = 7.6 Hz, C1'), 112.9 (C3'), 111.7 (dd, J = 15.9 Hz, J = 6.5 Hz, cod-CH), 110.1 (dd, J = 14.4 Hz, J = 5.4 Hz, cod-CH), 73.3 (d, J = 13.8 Hz, cod-CH), 66.8 (d, J = 13.6 Hz, cod-CH), 56.1 (OCH₃), 33.0 (d, J = 2.9 Hz, cod-CH₂), 31.6 (d, J = 2.0 Hz, cod-CH₂), 27.2 (m, cod-CH₂) ppm. The resonance for C10 was obscured.

³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ = 162.9 (d, ¹J_PPh = 223 Hz) ppm. **IR** (neat): ν = 3050.3 (w), 2971.5 (w), 1620.3 (w), 1589.3 (m), 1508.5 (m), 1462.2 (m), 1430.9 (w), 1326.8 (w), 1249.5 (w), 1224.1 (s), 1152.6 (w), 1073.9 (m), 944.9 (s), 868.8 (w), 807.3 (s), 746.6 (s), 695.6 (w), 673.9 (w), 636.5 (m), 598.5 (w), 599.3 (w) cm⁻¹. **HRMS** (NSI⁺, MeOH): Found: m/z = 867.1257. Calculated for [M + Na]⁺: m/z = 867.1273.
2.4 \([\text{RhCl(2b)(}\eta^4\text{-cod})]\) (3b)

2b (21.0 mg, 35.0 \(\mu\)mol) and \([\text{Rh(}\eta^4\text{-cod})\text{Cl}]_2\) (8.6 mg, 17.5 \(\mu\)mol) were dissolved in dichloromethane (1 mL) and stirred for 30 minutes. The solution was filtered and layered with diethyl ether to precipitate the product as a yellow solid overnight.

\(^1\text{H NMR}\) (500 MHz, CD$_2$Cl$_2$): \(\delta = 8.29\) (d, \(3^\text{H}_{\text{Rh}} = 8.8\) Hz, 1H, \(H13')\), 8.27 (d, \(3^\text{H}_{\text{Rh}} = 8.5\) Hz, 1H, \(H15')\), 7.99 (d, \(3^\text{H}_{\text{Rh}} = 8.5\) Hz, 1H, \(H5')\), 7.93 (d, \(3^\text{H}_{\text{Rh}} = 8.2\) Hz, 1H, \(H15)\), 7.86 (d, \(3^\text{H}_{\text{Rh}} = 8.2\) Hz, 1H, \(H5)\), 7.78 (d, \(3^\text{H}_{\text{Rh}} = 8.7\) Hz, 1H, \(H14)\), 7.62 (m, 2H, \(H3'/H4)\), 7.58-7.52 (m, 2H, \(H3/H6)\), 7.50-7.44 (m, 2H, \(H16/H16')\), 7.42-7.39 (m, 2H, \(H18/H18')\), 7.15 (d, \(3^\text{H}_{\text{Rh}} = 8.5\) Hz, 1H, \(H8)\), 6.99 (d, \(3^\text{H}_{\text{Rh}} = 8.8\) Hz, 1H, \(H13)\), 5.50 (br s, 1H, cod-C\(\text{H})\), 5.05 (br s, 1H, cod-C\(\text{H})\), 3.80 (s, 3H, OC\(\text{H})\), 2.67 (br s, 1H, cod-C\(\text{H})\), 2.17 (m, 1H, cod-C\(\text{H})\), 1.83 (m, 1H, cod-C\(\text{H})\), 1.78 (m, 1H, cod-C\(\text{H})\), 1.63 (br s, 1H, cod-C\(\text{H})\), 1.49 (m, 1H, cod-C\(\text{H})\), 1.42 (m, 1H, cod-C\(\text{H})\), 1.22 (m, 1H, cod-C\(\text{H})\), 1.14 (m, 1H, cod-C\(\text{H})\), 0.94 (m, 1H, cod-C\(\text{H})\) ppm.

\(^{13}\text{C}\{^{1}\text{H}\} NMR\) (126 MHz, CD$_2$Cl$_2$): \(\delta = 155.9\) (C2'), 150.2 (d, \(2^\text{JC} = 5.6\) Hz, C12'), 149.3 (d, \(2^\text{JC} = 12.6\) Hz, C12), 141.2 (d, \(2^\text{JC} = 26.4\) Hz, C1), 135.2 (d, \(1^\text{JC} = 1.4\) Hz, C2), 135.1 (C9'), 133.2 (d, \(3^\text{JC} = 11.2\) Hz, C9), 132.8 (d, \(4^\text{JC} = 1.4\) Hz, C19), 132.5 (d, \(4^\text{JC} = 2.1\) Hz, C19'), 131.8 (d, \(5^\text{JC} = 1.4\) Hz, C20'), 131.3 (d, \(5^\text{JC} = 0.9\) Hz, C20), 131.1 (C4'), 130.2 (d, \(4^\text{JC} = 1.4\) Hz, C14'), 130.0 (d, \(4^\text{JC} = 1.1\) Hz, C14), 128.5 (C15'), 128.4 (C15), 128.2 (C5), 128.1 (C5'), 128.1 (C6), 127.0 (C18/C8), 126.9 (C4), 126.7 (C7), 126.6 (C17), 126.4 (C17), 126.3 (C18'), 126.2 (C7'), 125.7 (C8'), 125.4 (C16'), 125.3 (C3), 125.3 (C16), 124.3 (d, \(3^\text{JC} = 2.1\) Hz, C13'), 123.9 (d, \(3^\text{JC} = 4.0\) Hz, C11'), 123.3 (C6'), 123.1 (d, \(3^\text{JC} = 2.5\) Hz, C11), 121.4 (C13), 119.3 (d, \(3^\text{JC} = 8.3\) Hz, C11'), 113.2 (C3'), 111.7 (dd, \(J = 15.3\) Hz, \(J = 6.7\) Hz, cod-CH), 108.4 (dd, \(J = 14.9\) Hz, \(J = 5.5\) Hz, cod-CH), 75.4 (d, \(J = 13.6\) Hz, cod-CH), 67.2 (d, \(J = 13.0\) Hz, cod-CH), 55.9 (OCH$_3$), 33.1 (d, \(J = 2.5\) Hz, cod-CH$_2$), 31.5 (d, \(J = 2.4\) Hz, cod-CH$_2$), 27.4 (d, \(J = 1.5\) Hz, cod-CH$_2$), 27.1 (d, \(J = 1.9\) Hz, cod-CH$_2$) ppm; resonances for C10 and C10' were obscured.

\(^{31}\text{P}\{^{1}\text{H}\} NMR\) (202 MHz, CD$_2$Cl$_2$): \(\delta = 161.5\) (d, \(1^\text{J}_{\text{PPH}3} = 224\) Hz) ppm. \(^{HRMS}\) (NSI\(^+\), MeCN): Found: \(m/z = 809.1672\). Calculated for \([\text{M} - \text{Cl}]^+\): \(m/z = 809.1686\).
2.5 [Rh(2a)₂]BF₄ (4a)

Method A: 2a (30 mg, 50 μmol) and [Rh(η⁴-cod)₂]BF₄ (10 mg, 25 μmol) were dissolved in dichloromethane (1 mL) and stirred for 30 minutes. The solution was filtered and layered with diethyl ether to precipitate the product as a yellow solid overnight.

Method B: 3a (21 mg, 25 μmol) was dissolved in dichloromethane (1 mL), AgBF₄ (4.8 mg, 25 μmol) and 2a (15 mg, 25 μmol) were then added and stirred for 30 minutes. The solution was filtered and concentrated in vacuo. The crude product was washed with diethyl ether to give the product as a yellow solid.

1H NMR (500 MHz, CD₂Cl₂): δ = 8.31 (d, 3J_C_H = 8.3 Hz, 1H, H₄A), 8.15 (d, 3J_C_H = 8.3 Hz, 1H, H₅A), 8.07 (d, 3J_C_H = 8.8 Hz, 1H, H₁B), 7.94 (d, 3J_C_H = 8.3 Hz, 1H, H₅B), 7.83 (m, 1H, H₁₅B), 7.83 (m, 1H, H₆B), 7.80 (m, 1H, H₆₈), 7.78 (m, 1H, H₁₅₈), 7.76 (m, 1H, H₁₅₈), 7.75 (m, 1H, H₄₈), 7.75 (m, 1H, H₁₄₈), 7.70 (m, 1H, H₇₈), 7.69 (m, 1H, H₆₈), 7.64 (m, 1H, H₁₄₇), 7.61 (m, 1H, H₁₅₇), 7.61 (m, 1H, H₇₈), 7.60 (m, 1H, H₃₈), 7.58 (m, 1H, H₃₈), 7.57 (m, 1H, H₁₅₈), 7.45 (d, 3J_C_H = 8.9 Hz, 1H, H₁₄₈), 7.39 (d, 3J_C_H = 8.3 Hz, 1H, H₅₈), 7.34 (pt, 3J_H_H = 7.3 Hz, 1H, H₁₆₈), 7.28 (m, 1H, H₇₇), 7.24 (m, 1H, H₁₆₈), 7.23 (m, 1H, H₃₈), 7.17 (m, 1H, H₁₆₈), 7.17 (m, 1H, H₅₈), 7.15 (m, 1H, H₁₆₈), 7.08 (m, 1H, H₁₄₈), 7.08 (m, 1H, H₈₈), 7.06 (m, 1H, H₁₇₈), 6.87 (m, 1H, H₁₈₈), 6.86 (m, 1H, H₁₇₈), 6.85 (m, 1H, H₆₈), 6.85 (m, 1H, H₁₃₈), 6.78 (d, 3J_C_H = 8.6 Hz, 1H, H₁₃₈), 6.63 (pt, 3J_H_H = 7.9 Hz, 1H, H₁₇₇), 6.54 (pt, 3J_H_H = 7.9 Hz, 1H, H₁₇₇), 6.42 (d, 3J_H_H = 8.6 Hz, 1H, H₁₈₈), 6.39 (br d, 3J_H_H = 8.0 Hz, 1H, H₄₈), 6.34 (pt, 3J_H_H = 8.1 Hz, 1H, H₃₈), 6.21 (d, 3J_H_H = 8.6 Hz, 1H, H₈₈), 6.17 (d, 3J_H_H = 8.6 Hz, 1H, H₁₈₈), 6.17 (pt, 3J_H_H = 8.6 Hz, 1H, H₆₈), 6.03 (d, 3J_H_H = 8.9 Hz, 1H, H₁₃₈), 5.76 (d, 3J_H_H = 8.9 Hz, 1H, H₁₅₈), 5.14 (d, 3J_H_H = 8.6 Hz, 1H, H₈₈), 4.82 (pt, 3J_H_H = 7.7 Hz, 1H, H₇₇), 4.18 (s, 3H, OCH₃), 4.07 (s, 3H, OCH₃) ppm. 31P NMR (126 MHz, CD₂Cl₂): δ = 153.8 (C₂⁻), 150.5 (d, 3J_CP = 53.0 Hz, C₂⁻), 149.1 (C₂⁻), 148.9 (d, 3J_CP = 15.5 Hz, C₁₂⁺), 147.9 (d, 3J_CP = 7.6 Hz, C₁₂⁻), 147.7 (d, 3J_CP = 13.2 Hz, C₁₂⁻), 146.2 (d, 3J_CP = 6.7 Hz, C₁₂⁺), 137.4 (d, 3J_CP = 33.7 Hz, C₁⁻), 136.4 (C₂⁻), 135.6 (C₁⁻), 135.3 (C₉⁻), 135.0 (C₁₀⁻), 134.8 (C₁₀⁺), 134.6 (C₉⁺), 132.8 (C₉⁻), 132.4 (C₁₀⁻), 132.1 (C₇⁻), 131.9 (C₁₀⁻), 131.7 (C₁₀⁺), 131.5 (C₂₀⁻), 131.0 (C₂₀⁺), 130.8 (C₁₄⁻), 130.2 (C₄⁻), 129.9 (C₁₄⁻), 129.6 (C₆⁻), 129.3 (C₁₄⁻), 128.7 (C₇⁻), 128.5 (C₅⁺), 128.4 (C₁₅⁻), 128.3 (C₁₅⁺), 128.2 (C₆⁻/C₁₅⁻/C₁₅⁺), 128.1 (C₁₄⁻), 127.9 (d, J = 13.5 Hz, C₄⁻), 127.7 (C₁₅⁻), 127.5 (C₇⁻), 127.4 (C₈⁻), 126.9 (C₁₈⁻), 126.6 (C₁₈⁻), 126.5 (C₁₈⁻), 126.4 (C₁₈⁺), 126.2 (C₁₇⁻), 126.1 (C₁₅⁻), 125.8 (C₁₇⁻), 125.6 (C₁₇⁻), 125.5 (C₁₇⁺), 125.4 (C₁₆⁻), 125.3 (C₁₆⁺), 125.1 (C₁₃⁻), 124.9 (C₁₆⁺), 123.3 (C₈⁻), 123.0 (C₆⁺), 122.8 (C₈⁻), 122.4 (C₁₁⁻), 121.9 (C₁₁⁺), 121.6 (C₁₁⁻), 121.3 (C₁₁⁺), 120.9 (C₁₃⁻), 120.7 (C₁₃⁻), 120.1 (C₁₁⁻), 119.5 (C₁₃⁻), 118.7 (C₉⁺), 114.2 (C₅⁻), 112.8 (C₁₀⁻), 100.5 (d, J = 14.3 Hz, C₁⁻), 95.8 (d, J = 11.3 Hz, C₄⁻), 87.5 (C₃⁻), 58.1 (OCH₃), 58.1 (OCH₃) ppm. 31P NMR (202 MHz, CD₂Cl₂): δ = 181.3 (ddd, 3J_P_P = 290 Hz, 3J_P_P = 22.3 Hz, 3J_P_P = 16.6 Hz, P³⁺), 179.6 (ddd, 3J_P_P = 300 Hz, 3J_P_P = 22.3 Hz, 3J_P_P = 6.6 Hz, P³⁺) ppm. IR (neat): ν = 3058.4 (w), 1621.3
(w), 1590.9 (w), 1506.2 (m), 1463.6 (m), 1324.4 (w), 1277.9 (w), 1222.9 (s), 1154.4 (w), 1069.0 (s), 956.8 (s), 837.3 (s), 810.1 (m), 746.4 (m), 696.2 (w) cm⁻¹. HRMS (NSI⁺, MeOH): Found: m/z = 1299.2432. Calculated for [M – BF₄⁺]: m/z = 1299.2445.
2.6 [Rh(2b)2]BF₄ (4b)

The same procedures as described for the synthesis of 4a were utilised using 2b as ligand. Yellow crystals suitable for X-ray analysis were formed overnight from slow diffusion of diethyl ether into a dichloromethane solution.

1H NMR (500 MHz, CD₂Cl₂): δ = 8.47 (dd, 1H, H₃), 8.34 (dd, 1H, H₄), 7.74 (m, 1H, H₅), 7.19 (pt, 1H, H₆), 7.07 (m, 1H, H₇), 6.84 (d, 3H, H₈), 6.59 (m, 1H, H₉), 6.48 (d, 3H, H₁₀), 6.42 (d, 3H, H₁₁), 6.41 (d, 3H, H₁₂), 6.09 (dd, 3H, H₁₃), 5.54 (d, 3H, H₁₄), 5.42 (d, 3H, H₁₅), 4.68 (d, 3H, H₁₆), 4.06 (s, 3H, OCH₃), 1.79 (s, 3H, OCH₃) ppm. **13C [1H] NMR** (126 MHz, CD₂Cl₂): δ = –2.0 (s) ppm. **31P NMR** (126 MHz, CD₂Cl₂): δ = 155.8 (C₅), 149.2 (d, 1C, C₆), 148.6 (d, 2C, C₇), 148.1 (m, C₁₁/C₁₂), 147.3 (d, 2C, C₁₃), 137.4 (d, 2C, C₁₄), 136.6 (C₁₅), 135.2 (C₁₆), 134.9 (d, 1C, C₁₇), 134.7 (C₁₈), 133.8 (C₉), 132.9 (C₁₉), 132.8 (C₂₀), 132.0 (C₂₁), 131.7 (C₂₂), 131.5 (C₂₃), 131.1 (C₂₄), 131.0 (C₂₅), 130.9 (C₂₆), 130.8 (C₂₇), 130.7 (C₉), 129.9 (C₄₄/C₄₅/C₁₆/C₁₇), 129.6 (C₆), 129.5 (C₆), 129.2 (C₁₄), 129.1 (C₁₅), 128.7 (C₆/C₁₄/C₁₅), 128.6 (C₉), 128.5 (C₄₄/C₄₅/C₁₆), 128.4 (C₅), 128.3 (C₁₁/C₁₂), 128.1 (C₁₃), 127.9 (C₇), 127.7 (d, 2C, C₁₈), 127.3 (d, 2C, C₁₉), 127.1 (C₈), 126.8 (C₁₀), 126.6 (C₁₁), 126.4 (C₁₂), 126.2 (C₁₃), 125.6 (C₁₄), 125.5 (C₁₅), 125.5 (C₁₆), 125.2 (C₁₇), 125.1 (C₁₈), 124.9 (C₁₉), 123.8 (C₂₀), 123.7 (C₂₁), 123.3 (C₂₂), 122.0 (C₂₃), 121.3 (C₂₄), 121.1 (C₂₅), 120.2 (C₁₆), 120.1 (C₁₇), 119.6 (C₉), 118.9 (C₁₄), 114.0 (C₁₅), 112.3 (C₆), 101.6 (d, J = 13.1 Hz, C₁₂), 93.1 (d, J = 12.3 Hz, C₇), 90.1 (C₅), 58.4 (OCH₃), 54.6 (OCH₃) ppm. **19F NMR** (376 MHz, CD₂Cl₂): δ = –152.9 (s) ppm. **31P NMR** (202 MHz, CD₂Cl₂): δ = 183.5 (ddd, 1P, Jₘₚₙₜₚ = 277 Hz, 1P, Jₘₚₙₜₚ = 23.5 Hz, 3P, Jₚₐₚₙₚ = 13.7 Hz, Pₚₚ), 178.4 (ddd, 1P, Jₘₚₙₜₚ = 309 Hz, 1P, Jₘₚₙₜₚ = 23.5 Hz, 3P, Jₚₐₚₙₚ = 8.3 Hz, Pₚₚ) ppm. **IR** (neat): υ = 3063.2 (w), 1621.2 (w), 1591.7 (w), 1506.3 (m), 1463.7 (m), 1324.2 (w), 1274.0 (m), 1223.7 (s), 1153.8 (w), 1068.9 (s), 956.1 (s), 837.0 (w), 810.1 (s), 746.6 (s), 696.3 (m) cm⁻¹. **HRMS** (NSI⁺, MeOH): Found: m/z = 1299.2440. Calculated for [M – BF₄⁺]: m/z = 1299.2445.
2.7 \([\text{Rh}(\text{OMe-MOP})_2]\text{BF}_4\) (5)

The same procedures as described for the synthesis of 4a were utilised using OMe-MOP as ligand. The solution was filtered and layered with hexane to precipitate the product as an orange solid overnight.

\(^1\text{H} \text{NMR}\) (500 MHz, CDCl\(_3\)): \(\delta = 7.94\) (d, \(^1\text{J}_{\text{HH}} = 8.2\) Hz, 1H, \(H5^b\)), 7.86 (d, \(^3\text{J}_{\text{HH}} = 8.0\) Hz, 1H, \(H5^a\)), 7.82 (dd, \(^5\text{J}_{\text{HH}} = 9.0\) Hz, \(^1\text{J}_{\text{HP}} = 1.3\) Hz, 1H, \(H4^b\)), 7.78 (dd, \(^3\text{J}_{\text{HH}} = 8.3\) Hz, \(^2\text{J}_{\text{HP}} = 0.8\) Hz, 1H, \(H8^b\)), 7.70 (d, \(^2\text{J}_{\text{HH}} = 7.5\) Hz, 1H, \(H3^b\)), 7.64 (ddd, \(^3\text{J}_{\text{HH}} = 6.9\) Hz, \(^4\text{J}_{\text{HH}} = 1.2\) Hz, 1H, \(H6^b\)), 7.60 (d, \(^3\text{J}_{\text{HH}} = 8.7\) Hz, 1H, \(H4^a\)), 7.57 (d, \(^3\text{J}_{\text{HH}} = 8.2\) Hz, 1H, \(H5^a\)), 7.54 (ddd, \(^3\text{J}_{\text{HH}} = 8.3\) Hz, \(^5\text{J}_{\text{HH}} = 6.9\) Hz, \(^4\text{J}_{\text{HH}} = 1.3\) Hz, 1H, \(H7^b\)), 7.49-7.46 (m, 2H, \(H6^a/H4^a\)), 7.38 (ddd, \(^3\text{J}_{\text{HH}} = 8.3\) Hz, \(^5\text{J}_{\text{HH}} = 7.2\) Hz, \(^4\text{J}_{\text{HH}} = 1.3\) Hz, 1H, \(H7^a\)), 7.30 (m, 1H, \(H11^b\)), 7.25 (m, 1H, \(H14^b\)), 7.17-7.12 (m, 3H, \(H6^b/H6^a/H7^a\)), 7.11-7.07 (m, 4H, \(H3^b/H13^b/H14^a\)), 7.04-6.98 (m, 4H, \(H3^a/H5^b/H13^b\)), 6.96 (ddd, \(^3\text{J}_{\text{HH}} = 8.4\) Hz, \(^3\text{J}_{\text{HH}} = 6.8\) Hz, \(^4\text{J}_{\text{HH}} = 1.3\) Hz, 1H, \(H7^a\)), 6.92-6.84 (m, 5H, \(H12^b/H13^a/H14^a\)), 6.81-6.73 (m, 5H, \(H12^a/H8^b/H3^a/H8^a\)), 6.60-6.54 (m, 3H, \(H12^b/H8^a\)), 6.33 (m, 2H, \(H13^b\)), 6.24-6.19 (m, 3H, \(H4^b/H12^a\)), 3.89 (s, 3H, OCH\(_3^b\)), 3.61 (s, 3H, OCH\(_3^a\)) ppm. \(^1\text{B} \text{NMR}\) (128 MHz, CD\(_2\)Cl\(_2\)): \(\delta = -1.6\) (s) ppm. \(^{13}\text{C}\{^1\text{H}\} \text{NMR}\) (126 MHz, CD\(_2\)Cl\(_2\)): \(\delta = 154.3\) (C2\(^a\)), 145.9 (d, \(^1\text{J}_{\text{CP}} = 50.3\) Hz, C2\(^b\)), 141.4 (C2\(^b\)), 139.3 (d, \(^2\text{J}_{\text{CP}} = 21.6\) Hz, C1\(^b\)), 137.2 (C1\(^a\)), 134.9 (d, \(^2\text{J}_{\text{CP}} = 13.1\) Hz, C12\(^a\)), 134.2 (C9\(^b/C9^a\)), 133.9 (d, \(^2\text{J}_{\text{CP}} = 13.1\) Hz, C12\(^a\)), 133.7 (C10\(^a\)), 133.5 (C9\(^a\)), 133.1 (d, \(^2\text{J}_{\text{CP}} = 12.2\) Hz, C12\(^b\)), 132.3 (d, \(^2\text{J}_{\text{CP}} = 11.7\) Hz, C12\(^b\)), 132.3 (C11\(^b\)), 131.9 (C11\(^a\)), 131.4 (m, C3\(^a\)), 131.3 (C14\(^b\)), 130.7 (C4\(^a\)), 130.6 (C4\(^b/C14^b/C14^a\)), 130.0 (d, \(^1\text{J}_{\text{CP}} = 49.8\) Hz, C11\(^a\)), 129.6 (C7\(^b\)), 129.4 (C14\(^a\)), 128.8 (C6\(^b\)), 128.7 (d, \(^3\text{J}_{\text{CP}} = 3.7\) Hz, C13\(^b\)), 128.6 (d, \(^3\text{J}_{\text{CP}} = 10.8\) Hz, C13\(^b\)), 128.6 (C10\(^a\)), 128.4 (C5\(^b/C7^b\)), 128.3 (C6\(^a\)), 128.0 (C5\(^a/C3^b\)), 127.9 (C5\(^a\)), 127.7 (C6\(^a\)), 127.5 (C13\(^a\)), 127.1 (C7\(^a\)), 126.9 (d, \(^3\text{J}_{\text{CP}} = 14.0\) Hz, C4\(^a\)), 126.5 (C8\(^a\)), 126.5 (d, \(^3\text{J}_{\text{CP}} = 3.4\) Hz, C13\(^b\)), 126.2 (C8\(^b\)), 126.0 (C7\(^b\)), 124.7 (C5\(^b\)), 124.6 (C8\(^a\)), 123.2 (C6\(^b\)), 123.1 (C9\(^b\)), 121.9 (C8\(^b\)), 120.2 (C10\(^a\)), 118.7 (C14\(^a\)), 112.4 (C3\(^a\)), 93.6 (d, \(J = 13.1\) Hz, C11\(^b\)), 92.3 (d, \(J = 9.2\) Hz, C4\(^b\)), 89.5 (C3\(^b\)), 57.2 (OCH\(_3^b\)), 55.8 (OCH\(_3^a\)) ppm; resonances for C2\(^a\), C10\(^b\) and C11\(^b\) were obscured. \(^{19}\text{F} \text{NMR}\) (376 MHz, CD\(_2\)Cl\(_2\)): \(\delta = -153.3\) (s) ppm. \(^{31}\text{P}\{^1\text{H}\} \text{NMR}\) (162 MHz, CDCl\(_3\)): \(\delta = 50.0\) (dd, \(^1\text{J}_{\text{PPh}} = 217\) Hz, \(^2\text{J}_{\text{PP}} = 32.1\) Hz, \(P^b\)), 37.2 (dd, \(^1\text{J}_{\text{PPh}} = 197\) Hz, \(^2\text{J}_{\text{PP}} = 32.1\) Hz, \(P^a\)) ppm.
Supporting Information

Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2013
Supporting Information

2.8 \([\text{IrCl(2a)}(\eta^4\text{-cod})]\) (6a)

2a (21.0 mg, 35.0 \(\mu\)mol) and \([\text{Ir(\eta^4\text{-cod})Cl}]_2\) (11.8 mg, 17.5 \(\mu\)mol) were dissolved in dichloromethane (1 mL) and stirred for 30 minutes. The solution was filtered and layered with diethyl ether. Red crystals suitable for X-ray analysis were formed overnight.

\(^1\text{H NMR}\) (500 MHz, \(\text{CD}_2\text{Cl}_2\)): \(\delta = 8.17\) (d, \(^{3}J_{\text{HH}} = 9.1\) Hz, 1H, \(H^4\)), 8.10 (d, \(^{3}J_{\text{HH}} = 8.8\) Hz, 1H, \(H^5\)), 8.05 (d, \(^{3}J_{\text{HH}} = 8.8\) Hz, 1H, \(H^4\)), 8.00 (d, \(^{3}J_{\text{HH}} = 8.9\) Hz, 1H, \(H^5\)), 7.93 (d, \(^{3}J_{\text{HH}} = 8.2\) Hz, 1H, \(H^5\)), 7.87 (d, \(^{3}J_{\text{HH}} = 8.1\) Hz, 1H, \(H^1\)), 7.87 (d, \(^{3}J_{\text{HH}} = 8.1\) Hz, 1H, \(H^5\)), 7.75 (dd, \(^{3}J_{\text{HH}} = 8.7\) Hz, \(^{3}J_{\text{HP}} = 6.3\) Hz, 1H, \(H^3\)), 7.71 (dd, \(^{3}J_{\text{HH}} = 8.7\) Hz, \(^{4}J_{\text{IP}} = 6.3\) Hz, 1H, \(H^4\)), 7.68 (d, \(^{3}J_{\text{HH}} = 8.9\) Hz, 1H, \(H^4\)), 7.57 (d, \(^{3}J_{\text{HH}} = 9.1\) Hz, 1H, \(H^3\)), 7.52-7.41 (m, 5H, \(H^6/H^16/H^16'/H^18'/H^18\)), 7.37-7.29 (m, 3H, \(H^6/H^16/H^17/H^17\)), 7.24-7.18 (m, 2H, \(H^7/H^7\)), 7.17 (d, \(^{3}J_{\text{HH}} = 8.9\) Hz, 1H, \(H^13\)), 7.04 (d, \(^{3}J_{\text{HH}} = 8.5\) Hz, 1H, \(H^8\)), 6.94 (d, \(^{3}J_{\text{HH}} = 8.5\) Hz, 1H, \(H^8\)), 5.08 (m, 1H, cod-\(CH\)), 3.98 (m, 1H, cod-\(CH\)), 3.96 (s, 3H, OCH\(_3\)), 2.18 (m, 1H, cod-\(CH\)), 2.08 (m, 1H, cod-\(CH\)), 1.75 (m, 1H, cod-\(CH\)), 1.51-1.40 (m, 3H, cod-\(CH\)), 1.31 (m, 1H, cod-\(CH\)), 1.05 (m, 1H, cod-\(CH\)), 1.00-0.95 (m, 2H, cod-\(CH\)) ppm.

\(^{13}\text{C}\{^1\text{H}\} NMR\) (101 MHz, \(\text{CD}_2\text{Cl}_2\)): \(\delta = 155.8\) (C2'), 149.7 (d, \(^{2}J_{\text{CP}} = 4.3\) Hz, C12), 149.6 (d, \(^{2}J_{\text{CP}} = 10.9\) Hz, C12'), 140.7 (d, \(^{2}J_{\text{CP}} = 22.4\) Hz, C1), 135.1 (C2), 134.6 (C9'), 133.2 (d, \(J = 11.7\) Hz), 132.8, 132.4 (d, \(J = 1.3\) Hz), 132.3 (d, \(J = 2.2\) Hz), 132.2, 131.7, 131.4 (C4'), 129.9 (C14'), 129.8 (C14), 129.6 (C8'), 129.2 (C10'), 128.4 (C15), 128.4 (C15'), 128.1 (C5), 127.9 (C6), 127.1 (C5'), 126.9 (C4), 126.7 (C18), 126.7 (C18'), 126.6 (C7), 126.6 (C8), 126.3 (C17/C17'), 126.2 (C7'), 125.8 (d, \(^{2}J_{\text{CP}} = 3.3\) Hz, C3), 125.4 (C16), 125.2 (C16'), 124.5 (C13), 124.0 (C6/C11), 123.3 (d, \(^{3}J_{\text{CP}} = 2.7\) Hz, C11'), 121.7 (C13'), 120.0 (d, \(^{3}J_{\text{CP}} = 7.8\) Hz, C1'), 112.7 (C3'), 102.5 (d, \(^{2}J_{\text{CP}} = 18.5\) Hz, cod-\(CH\)), 101.8 (d, \(^{2}J_{\text{CP}} = 15.9\) Hz, cod-\(CH\)), 56.1 (cod-\(CH\)), 56.0 (OCH\(_3\)), 49.7 (cod-\(CH\)), 33.6 (d, \(^{3}J_{\text{CP}} = 3.9\) Hz, cod-\(CH\)), 32.1 (d, \(^{3}J_{\text{CP}} = 2.7\) Hz, cod-\(CH\)), 27.9 (d, \(^{3}J_{\text{CP}} = 2.3\) Hz, cod-\(CH\)), 27.6 (d, \(^{3}J_{\text{CP}} = 2.6\) Hz, cod-\(CH\)) ppm; resonances for C9, C19, C19', C20 and C20' could not be specifically assigned. \(^{31}\text{P}\) \(^{1}\text{H}\) NMR (202 MHz, \(\text{CD}_2\text{Cl}_2\)): \(\delta = 140.4\) ppm. HRMS (NSI', MeCN): Found: \(m/z = 897.2214\). Calculated for [M – Cl\(^+\)]: \(m/z = 897.2237\).
2.9 [IrCl(2b)(η⁴-cod)] (6b)

2b (30.0 mg, 50.0 μmol) and [Ir(η⁴-cod)Cl]₂ (16.8 mg, 25.0 μmol) were dissolved in dichloromethane (2 mL) and stirred for 30 minutes. The solution was filtered and layered with diethyl ether to precipitate the product as a yellow solid overnight.

¹H NMR (500 MHz, CD₂Cl₂): δ = 8.20 (d, 3 ³J_HH = 9.2 Hz, 1H, H4'), 8.08 (d, ³J_HH = 8.8 Hz, 1H, H13'), 8.04 (d, ³J_HH = 8.8 Hz, 1H, H14'), 7.97-7.92 (m, 3H, H15'/H5'/H15), 7.87 (d, ³J_HH = 8.3 Hz, 1H, H5), 7.80 (d, ³J_HH = 8.9 Hz, 1H, H14), 7.66 (d, ³J_HH = 8.8 Hz, 1H, H4), 7.61 (dd, ³J_HH = 8.7 Hz, 3 ³J_HP = 6.3 Hz, 1H, H3), 7.53 (ddd, ³J_HH = 8.3 Hz, ³J_HH = 6.8 Hz, 4 ³J_HH = 1.3 Hz, 1H, H6), 7.51 (d, ³J_HH = 9.2 Hz, 1H, H3'), 7.49 (ddd, ³J_HH = 8.2 Hz, ³J_HH = 6.8 Hz, 4 ³J_HH = 1.3 Hz, 1H, H16), 7.46-7.39 (m, 4H, H16'/H7'/H18/H8'), 7.36-7.30 (m, 2H, H6'/H17), 7.29-7.23 (m, 3H, H7/H17/H18'), 7.13 (d, ³J_HH = 8.6 Hz, 1H, H8), 7.04 (d, ³J_HH = 8.9 Hz, 1H, H13), 5.26 (m, 1H, cod-C), 4.70 (m, 1H, cod-C), 3.76 (s, 3H, OC₃), 2.13 (m, 1H, cod-C), 2.04 (m, 1H, cod-C), 1.72 (m, 1H, cod-C), 1.65 (m, 1H, cod-C), 1.36-1.26 (m, 2H, cod-C), 0.96-0.86 (m, 2H, cod-C), 0.73 (m, 1H, cod-C) ppm.

¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ = 155.6 (C₂'), 149.8 (d, ²J_CP = 5.8 Hz, C12'), 149.2 (d, ²J_CP = 12.8 Hz, C12), 141.3 (d, ²J_CP = 24.1 Hz, C1), 135.3 (d, ¹J_CP = 1.8 Hz, C2), 135.0 (C9'), 133.1 (d, ³J_CP = 11.6 Hz, C9), 132.8 (d, ⁴J_CP = 7.4 Hz, C19), 132.4 (d, ⁴J_CP = 1.6 Hz, C19'), 131.7 (d, ⁵J_CP = 1.6 Hz, C20'), 131.4 (d, ⁵J_CP = 0.9 Hz, C20), 131.1 (C4'), 130.0 (C14'), 129.8 (C14), 128.4 (C15'), 128.4 (C15), 128.2 (C5'), 128.1 (C5), 128.1 (C6), 127.1 (d, ⁴J_CP = 2.0 Hz, C8), 127.1 (C4), 127.0 (C8/C18), 126.7 (C18'), 126.4 (C7), 126.3 (C17), 126.2 (C7), 125.8 (d, ²J_CP = 3.1 Hz, C3), 125.6 (C17), 125.3 (C16'), 125.3 (C16), 124.7 (d, ³J_CP = 2.7 Hz, C13'), 123.6 (d, ¹J_CP = 3.7 Hz, C11'), 123.3 (C6'), 123.0 (d, ²J_CP = 2.5 Hz, C11), 121.4 (d, ³J_CP = 1.4 Hz, C13), 119.5 (d, ³J_CP = 8.0 Hz, C1'), 112.9 (C3'), 102.6 (d, ²J_CP = 18.5 Hz, cod-CH), 99.7 (d, ²J_CP = 17.0 Hz, cod-CH), 57.9 (d, ²J_CP = 1.5 Hz, cod-CH), 55.7 (OCH₃), 50.5 (cod-CH), 33.4 (d, ³J_CP = 3.5 Hz, cod-CH₂), 32.2 (d, ³J_CP = 3.0 Hz, cod-CH₂), 27.8 (d, ³J_CP = 2.4 Hz, cod-CH₂), 27.7 (d, ³J_CP = 2.9 Hz, cod-CH₂) ppm; resonances for C10 and C10' were obscured.

³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ = 139.6 ppm. **HRMS** (NSI⁺, MeCN): Found: m/z = 897.2226. Calculated for [M – Cl]⁺: m/z = 897.2237.
2.10 [Ir(2a)₂(η⁴-cod)]BF₄ (7a)

Method A: 2a (30.0 mg, 50 μmol) and [Ir(η⁴-cod)₂]BF₄ (12.4 mg, 25 μmol) were dissolved in dichloromethane (1 mL) and stirred for 30 minutes. The solution was filtered and layered with diethyl ether to precipitate the product as a green solid.

Method B: 6a (24.6 mg, 25 μmol) was dissolved in dichloromethane (1 mL), AgBF₄ (4.8 mg, 25 μmol) and 2a (15.0 mg, 25 μmol) were added and stirred for 30 minutes. The solution was filtered and concentrated in vacuo. The crude product was washed with diethyl ether to give the product as a green solid.

1H NMR (500 MHz, CDCl₃): δ = 8.27 (d, JHH = 8.8 Hz, 2H, H14), 8.14 (d, JHH = 8.2 Hz, 2H, H15), 7.85 (d, JHH = 8.3 Hz, 2H, H5), 7.69 (d, JHH = 9.1 Hz, 2H, H4'), 7.61 (d, JHH = 8.1 Hz, 2H, H15'), 7.58-7.54 (m, 4H, H₄/H₁₆), 7.83 (pt, JHH = 7.5 Hz, 2H, H6), 7.37-7.30 (m, 6H, H₃/H₁₆/H₃'), 7.24 (d, JHH = 8.8 Hz, 2H, H13), 7.16 (d, JHH = 8.2 Hz, 2H, H5'), 7.12-7.02 (m, 8H, H₁₇/H₇/H₁₄/H₁₇'), 6.84 (d, JHH = 8.6 Hz, 2H, H8), 6.81 (d, JHH = 8.6 Hz, 2H, H18), 6.58 (d, JHH = 8.6 Hz, 2H, H18'), 6.10 (pt, JHH = 7.5 Hz, 2H, H6'), 5.64 (m, 2H, cod-C₃H), 5.10 (d, JHH = 8.8 Hz, 2H, H13'), 5.08 (d, JHH = 8.5 Hz, 2H, H8'), 4.86 (pt, JHH = 7.6 Hz, 2H, H7'), 4.67 (m, 2H, cod-CH), 3.62 (s, 6H, OCH₃), 2.73 (m, 2H, cod-CH₂), 2.57 (m, 2H, cod-CH₂), 2.15 (m, 2H, cod-CH₂), 2.00 (m, 2H, cod-CH₂) ppm.

11B NMR (128 MHz, CD₂Cl₂): δ = –1.6 (s) ppm.

13C{1H} NMR (126 MHz, CDCl₃): δ = 153.2 (C2'), 147.6 (pt, JCP = 12.2 Hz, C12'), 147.2 (pt, JCP = 7.0 Hz, C12), 138.8 (C1), 134.7 (C10), 134.5 (C9'), 132.9 (pt, JCP = 8.4 Hz, C9), 132.8 (C19), 132.4 (C19'), 132.1 (C20), 131.4 (C20'), 130.9 (C14), 130.2 (C4'), 130.0 (C14'), 128.7 (C15), 128.6 (C6), 128.2 (C5), 128.1 (C4), 127.9 (C15'), 127.6 (C8), 127.6 (C18), 127.5 (C18'), 127.4 (C10'), 127.4 (C7), 126.8 (C17), 126.3 (C5'), 126.0 (C17'), 125.9 (C16), 125.5 (C16'), 125.4 (C7'), 123.5 (C11), 122.4 (C6'), 122.3 (C8'), 121.6 (C11'), 120.6 (C13), 119.6 (C13'), 119.5 (C1', 111.5 (C3'), 99.2 (pt, JCP = 14.8 Hz, cod-CH), 94.3 (pt, JCP = 10.2 Hz, cod-CH), 55.6 (OCH₃), 33.3 (cod-CH₂), 29.3 (cod-CH₂) ppm; resonances for C2 and C3 were obscured.

19F NMR (376 MHz, CD₂Cl₂): δ = –153.5 (s) ppm.

31P{1H} NMR (202 MHz, CDCl₃): δ = 156.3 ppm.

HRMS (NSI⁺, MeOH): Found: m/z = 1495.3935. Calculated for [M – BF₄]⁺: m/z = 1495.3935.
2.11 Asymmetric Addition of Phenylboronic Acid to 1-Naphthaldehyde

[Rh(acac)(η²-C₂H₄)₂] (2.6 mg, 10 μmol) and ligand 2a (12 mg, 20 μmol) were dissolved in THF (4 mL) and left to stir for 20 minutes. Phenylboronic acid (122 mg, 1.0 mmol), base (2.5 M aqueous solution, 1.0 mmol) and 1-naphthaldehyde (68 μl, 0.5 mmol) were added subsequently. The reaction mixture was heated to 60 °C and the conversion was followed by TLC analysis. After 8 hours reaction time the solvent was evaporated and the crude product was purified by column chromatography (hexane/EtOAc, 10:1) on silica media (h = 15 cm, d = 2 cm) to give the product as a colourless oil; 85% yield, 34% ee (R). The enantiomeric excess was measured by chiral HPLC (Column Daicel Chiralpak OD; flow rate: 1.0 mL/min; hexane/2-propanol, 80:20; retention times: (S) t₁ = 10.1 min, (R) t₂ = 19.4 min).7

References

3 CrysAlisPro; Agilent Ltd., Abingdon, Oxfordshire, UK, 2008.
6 J. C. Cobas and M. Martin-Pastor, EXSYCalc 1.0; Mestrelab Research, Escondido, CA, 2007.