Supporting Information

Lipophilic Bismuth Phosphates: A Molecular Tetradecanuclear Cage and a 1D-Coordination Polymer. Synthesis, Structure and Conversion to BiPO_4

Vadapalli Chandrasekhar,* Ramesh K. Metre and Ramakirushnan Suriya Narayanan

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur – 208016, India.

[†] Prof. V. Chandrasekhar
Department of Chemistry
Indian Institute of Technology, Kanpur
Kanpur – 208016, India
Fax: (+91)-512-2597436
E-mail: vc@iitk.ac.in
Figure S1 ESI-MS of 1
$[(\text{Bi}(L_1\text{H})_2(\text{CH}_3\text{OH})_2)]^+$

a) Experimental

b) Simulated

Figure S2 ESI-MS isotopic pattern of fragment in 1.
Figure S3 31P NMR spectra of 1
Figure S4. View showing the 3D arrangement in 1. Hydrogen atoms have been omitted for the sake of clarity.
Figure S5 ESI-MS of 2
Figure S6 ESI-MS isotopic pattern for the fragments in 2.
Figure S7 31P NMR spectra of 2
Figure S8. View showing the 2D arrangement of the 1D polymeric chain in 2 resulting due to C-H…π interactions. The metric parameters involved are: C(10)-H(10), 0.930 (8)Å C10-H10…π, 3.698 (8) Å, C10-H10…π, 130.68 (4)°; C(12)-H(12), 0.930 (7)Å, C12-H12…π, 4.271 (1) Å, C12-H12…π, 133.65 (4)°. Hydrogen atoms have been omitted for the sake of clarity.
Chart S1: Presence of Stereochemically active lone pair of bismuth atoms in 1 (green color) and 2 (blue color), the arrows show the approximate location of lone pair electrons.
Table S1. Individual coordination environment of bismuth in 1 and Selected bond lengths (Å) and bond angles (°) parameters.

<table>
<thead>
<tr>
<th>individual bismuth</th>
<th>bond distances</th>
<th>bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi(1)-O(37)</td>
<td>2.228(11)</td>
<td>O(37)-Bi(1)-O(29)</td>
</tr>
<tr>
<td>Bi(1)-O(29)</td>
<td>2.199(10)</td>
<td>92.1(6)</td>
</tr>
<tr>
<td>Bi(1)-O(30)</td>
<td>2.187(11)</td>
<td>O(37)-Bi(1)-O(30)</td>
</tr>
<tr>
<td>Bi(1)-O(16)</td>
<td>2.628(13)</td>
<td>91.7(5)</td>
</tr>
<tr>
<td>Bi(1)-O(31)</td>
<td>2.735(13)</td>
<td>O(37)-Bi(1)-O(16)</td>
</tr>
<tr>
<td>Bi(2)-O(30)</td>
<td>2.173(10)</td>
<td>O(37)-Bi(1)-O(1)′</td>
</tr>
<tr>
<td>Bi(2)-O(37)′</td>
<td>2.169(12)</td>
<td>96.4(5)</td>
</tr>
<tr>
<td>Bi(2)-O(29)</td>
<td>2.159(11)</td>
<td>O(37)-Bi(1)-O(1)′</td>
</tr>
<tr>
<td>Bi(2)-O(31)</td>
<td>2.746(13)</td>
<td>99.0(6)</td>
</tr>
<tr>
<td>Bi(2)-O(32)</td>
<td>2.589(11)</td>
<td>O(29)-Bi(1)-O(1)′</td>
</tr>
<tr>
<td>Bi(2)-O(31)</td>
<td>2.746(13)</td>
<td>99.0(6)</td>
</tr>
<tr>
<td>Bi(2)-O(30)</td>
<td>2.173(10)</td>
<td>O(29)-Bi(1)-O(1)′</td>
</tr>
<tr>
<td>Bi(2)-O(31)</td>
<td>2.746(13)</td>
<td>70.3(6)</td>
</tr>
<tr>
<td>Bi(2)-O(32)</td>
<td>2.589(11)</td>
<td>O(29)-Bi(1)-O(1)′</td>
</tr>
<tr>
<td>Bi(3)-O(31)</td>
<td>2.746(13)</td>
<td>70.3(6)</td>
</tr>
<tr>
<td>Bi(5)-O(29)</td>
<td>2.164(11)</td>
<td>O(37)-Bi(1)-O(33)′</td>
</tr>
<tr>
<td>Bi(5)-O(34)′</td>
<td>2.203(9)</td>
<td>74.7(6)</td>
</tr>
<tr>
<td>Bi(5)-O(33)′</td>
<td>2.229(10)</td>
<td>O(37)-Bi(1)-O(34)′</td>
</tr>
<tr>
<td>Bi(5)-O(1)′</td>
<td>2.564(13)</td>
<td>89.2(5)</td>
</tr>
<tr>
<td>Bi(5)-O(32)</td>
<td>2.591(12)</td>
<td>O(37)-Bi(1)-O(33)′</td>
</tr>
<tr>
<td>Bi(5)-O(31)</td>
<td>2.746(13)</td>
<td>87.9(5)</td>
</tr>
<tr>
<td>Bi(5)-O(34)′</td>
<td>2.203(9)</td>
<td>O(37)-Bi(1)-O(34)′</td>
</tr>
<tr>
<td>Bi(5)-O(33)′</td>
<td>2.229(10)</td>
<td>74.7(4)</td>
</tr>
<tr>
<td>Bi(5)-O(1)′</td>
<td>2.564(13)</td>
<td>O(37)-Bi(1)-O(34)′</td>
</tr>
<tr>
<td>Bi(5)-O(32)</td>
<td>2.591(12)</td>
<td>72.8(6)</td>
</tr>
<tr>
<td>Bi(5)-O(31)</td>
<td>2.746(13)</td>
<td>O(37)-Bi(1)-O(34)′</td>
</tr>
<tr>
<td>Bi(5)-O(32)</td>
<td>2.591(12)</td>
<td>79.1(5)</td>
</tr>
<tr>
<td>Bi(5)-O(31)</td>
<td>2.746(13)</td>
<td>O(37)-Bi(1)-O(34)′</td>
</tr>
<tr>
<td></td>
<td>Bond Length (Å)</td>
<td>Bond Angle (°)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Bi(5)-O(12)'</td>
<td>2.717(13)</td>
<td>O(33)-Bi(5)-O(32) 76.3(5)</td>
</tr>
<tr>
<td>Bi(5)-O(8)'</td>
<td>2.416(13)</td>
<td>O(34)-Bi(5)-O(12)' 101.7(6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O(33)-Bi(5)-O(12)' 69.6(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O(32)-Bi(5)-O(12)' 85.2(6)</td>
</tr>
<tr>
<td>Bi(7)-O(37)</td>
<td>2.121(11)</td>
<td>O(37)-Bi(7)-O(17) 84.6(5)</td>
</tr>
<tr>
<td>Bi(7)-O(17)</td>
<td>2.264(13)</td>
<td>O(37)-Bi(7)-O(36) 82.7(6)</td>
</tr>
<tr>
<td>Bi(7)-O(36)</td>
<td>2.283(11)</td>
<td>O(17)-Bi(7)-O(36) 81.2(7)</td>
</tr>
<tr>
<td>Bi(7)-O(15)</td>
<td>2.299(13)</td>
<td>O(37)-Bi(7)-O(15) 81.9(5)</td>
</tr>
<tr>
<td>Bi(7)-O(28)</td>
<td>2.326(11)</td>
<td>O(37)-Bi(7)-O(28) 76.9(6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O(15)-Bi(7)-O(28) 81.7(6)</td>
</tr>
</tbody>
</table>
Table S2. bond distance (Å) and bond angle (°) data for 1

<table>
<thead>
<tr>
<th></th>
<th>Bond Distance (Å)</th>
<th></th>
<th>Bond Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi1</td>
<td>2.637(13)</td>
<td>O32</td>
<td>1.532(12)</td>
</tr>
<tr>
<td>Bi1</td>
<td>2.628(13)</td>
<td>O36</td>
<td>1.526(11)</td>
</tr>
<tr>
<td>Bi1</td>
<td>2.199(10)</td>
<td>O37</td>
<td>1.519(12)</td>
</tr>
<tr>
<td>Bi1</td>
<td>2.187(11)</td>
<td>C1</td>
<td>1.34(4)</td>
</tr>
<tr>
<td>Bi1</td>
<td>2.735(13)</td>
<td>C43</td>
<td>1.46(4)</td>
</tr>
<tr>
<td>Bi1</td>
<td>2.228(11)</td>
<td>C2</td>
<td>1.541(18)</td>
</tr>
<tr>
<td>Bi2</td>
<td>3.5718(12)</td>
<td>C2</td>
<td>1.43(4)</td>
</tr>
<tr>
<td>Bi2</td>
<td>2.719(13)</td>
<td>C3</td>
<td>1.535(18)</td>
</tr>
<tr>
<td>Bi2</td>
<td>2.159(11)</td>
<td>C3</td>
<td>1.543(18)</td>
</tr>
<tr>
<td>Bi2</td>
<td>2.173(10)</td>
<td>C5</td>
<td>1.40(3)</td>
</tr>
<tr>
<td>Bi2</td>
<td>2.746(13)</td>
<td>C5</td>
<td>1.40(3)</td>
</tr>
<tr>
<td>Bi2</td>
<td>2.589(11)</td>
<td>C6</td>
<td>1.43(3)</td>
</tr>
<tr>
<td>Bi2</td>
<td>2.169(12)</td>
<td>C6</td>
<td>1.523(18)</td>
</tr>
<tr>
<td>Bi3</td>
<td>2.614(13)</td>
<td>C7</td>
<td>1.38(3)</td>
</tr>
<tr>
<td>Bi3</td>
<td>2.750(13)</td>
<td>C8</td>
<td>1.553(18)</td>
</tr>
<tr>
<td>Bi3</td>
<td>2.596(13)</td>
<td>C8</td>
<td>1.40(3)</td>
</tr>
<tr>
<td>Bi3</td>
<td>2.169(10)</td>
<td>C9</td>
<td>1.546(18)</td>
</tr>
<tr>
<td>Bi3</td>
<td>2.226(10)</td>
<td>C9</td>
<td>1.530(18)</td>
</tr>
<tr>
<td>Bi3</td>
<td>2.209(10)</td>
<td>C10</td>
<td>1.40(3)</td>
</tr>
<tr>
<td>Bi4</td>
<td>2.241(13)</td>
<td>C11</td>
<td>1.42(4)</td>
</tr>
<tr>
<td>Bi4</td>
<td>2.175(13)</td>
<td>C11</td>
<td>1.40(4)</td>
</tr>
<tr>
<td>Bi4</td>
<td>2.416(13)</td>
<td>C12</td>
<td>1.513(18)</td>
</tr>
<tr>
<td>Bi4</td>
<td>2.446(13)</td>
<td>C12</td>
<td>1.43(4)</td>
</tr>
<tr>
<td>Bi4</td>
<td>2.155(9)</td>
<td>C13</td>
<td>1.545(18)</td>
</tr>
<tr>
<td>Bi5</td>
<td>2.564(13)</td>
<td>C13</td>
<td>1.544(13)</td>
</tr>
<tr>
<td>Bi5</td>
<td>2.717(13)</td>
<td>C16</td>
<td>1.498(18)</td>
</tr>
<tr>
<td>Bi5</td>
<td>2.164(11)</td>
<td>C16</td>
<td>1.53(4)</td>
</tr>
<tr>
<td>Bi5</td>
<td>2.591(12)</td>
<td>C18</td>
<td>1.41(3)</td>
</tr>
<tr>
<td>Bi5</td>
<td>2.229(10)</td>
<td>C18</td>
<td>1.39(3)</td>
</tr>
<tr>
<td>Bi5</td>
<td>2.203(9)</td>
<td>C19</td>
<td>1.527(18)</td>
</tr>
<tr>
<td>Bi6</td>
<td>2.446(13)</td>
<td>C19</td>
<td>1.34(3)</td>
</tr>
<tr>
<td>Bi6</td>
<td>2.338(13)</td>
<td>C20</td>
<td>1.542(17)</td>
</tr>
<tr>
<td>Bi6</td>
<td>2.207(13)</td>
<td>C20</td>
<td>1.521(17)</td>
</tr>
<tr>
<td>Bi6</td>
<td>2.249(13)</td>
<td>C21</td>
<td>1.539(17)</td>
</tr>
<tr>
<td>Bi6</td>
<td>2.134(10)</td>
<td>C21</td>
<td>1.43(3)</td>
</tr>
<tr>
<td>Bi7</td>
<td>3.5718(12)</td>
<td>C22</td>
<td>1.546(17)</td>
</tr>
<tr>
<td>Bi7</td>
<td>2.299(13)</td>
<td>C22</td>
<td>1.534(17)</td>
</tr>
<tr>
<td>Bi7</td>
<td>2.264(13)</td>
<td>C24</td>
<td>1.27(3)</td>
</tr>
<tr>
<td>Bi7</td>
<td>2.326(11)</td>
<td>C25</td>
<td>1.36(3)</td>
</tr>
<tr>
<td>Atom 1</td>
<td>Atom 2</td>
<td>Atom 3</td>
<td>Atom 4</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Bi7 O36</td>
<td>2.283(11)</td>
<td>C27</td>
<td>C28</td>
</tr>
<tr>
<td>Bi7 O37</td>
<td>2.121(11)</td>
<td>C27</td>
<td>C34</td>
</tr>
<tr>
<td>P1 O14</td>
<td>1.527(13)</td>
<td>C28</td>
<td>C29</td>
</tr>
<tr>
<td>P1 O15</td>
<td>1.519(14)</td>
<td>C28</td>
<td>C31</td>
</tr>
<tr>
<td>P1 O22</td>
<td>1.614(14)</td>
<td>C29</td>
<td>C30</td>
</tr>
<tr>
<td>P1 O32</td>
<td>1.532(12)</td>
<td>C29</td>
<td>C59</td>
</tr>
<tr>
<td>P2 O16</td>
<td>1.495(13)</td>
<td>C31</td>
<td>C32</td>
</tr>
<tr>
<td>P2 O17</td>
<td>1.552(13)</td>
<td>C32</td>
<td>C33</td>
</tr>
<tr>
<td>P2 O18</td>
<td>1.526(14)</td>
<td>C33</td>
<td>C34</td>
</tr>
<tr>
<td>P2 O19</td>
<td>1.575(13)</td>
<td>C34</td>
<td>C35</td>
</tr>
<tr>
<td>P3 O6</td>
<td>1.504(13)</td>
<td>C35</td>
<td>C36</td>
</tr>
<tr>
<td>P3 O7</td>
<td>1.537(14)</td>
<td>C35</td>
<td>C37</td>
</tr>
<tr>
<td>P3 O21</td>
<td>1.581(14)</td>
<td>C38</td>
<td>C62</td>
</tr>
<tr>
<td>P3 O28</td>
<td>1.530(12)</td>
<td>C38</td>
<td>C73</td>
</tr>
<tr>
<td>P4 O9</td>
<td>1.503(14)</td>
<td>C42</td>
<td>C60</td>
</tr>
<tr>
<td>P4 O10</td>
<td>1.484(13)</td>
<td>C42</td>
<td>C61</td>
</tr>
<tr>
<td>P4 O11</td>
<td>1.527(14)</td>
<td>C43</td>
<td>C44</td>
</tr>
<tr>
<td>P4 O20</td>
<td>1.590(14)</td>
<td>C43</td>
<td>C53</td>
</tr>
<tr>
<td>P5 O8</td>
<td>1.521(14)</td>
<td>C44</td>
<td>C71</td>
</tr>
<tr>
<td>P5 O12</td>
<td>1.541(14)</td>
<td>C44</td>
<td>C72</td>
</tr>
<tr>
<td>P5 O23</td>
<td>1.623(14)</td>
<td>C45</td>
<td>C52</td>
</tr>
<tr>
<td>P5 O24</td>
<td>1.524(13)</td>
<td>C46</td>
<td>C54</td>
</tr>
<tr>
<td>P6 O1</td>
<td>1.520(13)</td>
<td>C52</td>
<td>C53</td>
</tr>
<tr>
<td>P6 O2</td>
<td>1.495(13)</td>
<td>C54</td>
<td>C77</td>
</tr>
<tr>
<td>P6 O25</td>
<td>1.619(14)</td>
<td>C63</td>
<td>C74</td>
</tr>
<tr>
<td>P6 O36</td>
<td>1.526(11)</td>
<td>C63</td>
<td>C78</td>
</tr>
<tr>
<td>O1 Bi1</td>
<td>2.637(13)</td>
<td>C63</td>
<td>C56</td>
</tr>
<tr>
<td>O19C18</td>
<td>1.39(3)</td>
<td>C64</td>
<td>C65</td>
</tr>
<tr>
<td>O20C27</td>
<td>1.47(3)</td>
<td>C64</td>
<td>C80</td>
</tr>
<tr>
<td>O21C26</td>
<td>1.32(2)</td>
<td>C64</td>
<td>C40</td>
</tr>
<tr>
<td>O22C1</td>
<td>1.43(3)</td>
<td>C146C56</td>
<td>1.3900</td>
</tr>
<tr>
<td>O23C5</td>
<td>1.37(2)</td>
<td>C146C147</td>
<td>1.3900</td>
</tr>
<tr>
<td>O25C11</td>
<td>1.41(3)</td>
<td>C56</td>
<td>C26</td>
</tr>
<tr>
<td>O28P3</td>
<td>1.530(12)</td>
<td>C26</td>
<td>C40</td>
</tr>
<tr>
<td>O29Bi5</td>
<td>2.164(10)</td>
<td>C40</td>
<td>C145</td>
</tr>
<tr>
<td>O31C81</td>
<td>1.465(17)</td>
<td>C145C147</td>
<td>1.3900</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z+2 #2 -x+2,-y+2,-z+1
Table S3. Bond lengths [Å] and angles [°] for 2

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi(1)-C(1)</td>
<td>2.242(8)</td>
</tr>
<tr>
<td>Bi(1)-C(7)</td>
<td>2.250(7)</td>
</tr>
<tr>
<td>Bi(1)-O(4)</td>
<td>2.356(6)</td>
</tr>
<tr>
<td>Bi(1)-O(1)</td>
<td>2.368(6)</td>
</tr>
<tr>
<td>P(1)-O(1)</td>
<td>1.499(6)</td>
</tr>
<tr>
<td>P(1)-O(4)#1</td>
<td>1.505(6)</td>
</tr>
<tr>
<td>P(1)-O(3)</td>
<td>1.577(5)</td>
</tr>
<tr>
<td>P(1)-O(2)</td>
<td>1.590(6)</td>
</tr>
<tr>
<td>O(2)-C(13)</td>
<td>1.479(10)</td>
</tr>
<tr>
<td>O(3)-C(17)</td>
<td>1.479(9)</td>
</tr>
<tr>
<td>O(4)-P(1)#2</td>
<td>1.505(6)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.367(11)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.398(10)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.382(11)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.382(11)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.394(12)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.392(11)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.384(10)</td>
</tr>
<tr>
<td>C(7)-C(11)</td>
<td>1.401(11)</td>
</tr>
<tr>
<td>C(8)-C(12)</td>
<td>1.388(11)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.374(12)</td>
</tr>
<tr>
<td>C(9)-C(12)</td>
<td>1.389(13)</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.391(11)</td>
</tr>
</tbody>
</table>
C(13)-C(15) 1.509(11)
C(13)-C(16) 1.529(12)
C(13)-C(14) 1.539(13)
C(17)-C(18) 1.514(11)
C(17)-C(20) 1.521(11)
C(17)-C(19) 1.543(11)

C(1)-Bi(1)-C(7) 91.3(3)
C(1)-Bi(1)-O(4) 88.9(2)
C(7)-Bi(1)-O(4) 86.9(2)
C(1)-Bi(1)-O(1) 89.4(2)
C(7)-Bi(1)-O(1) 85.1(2)
O(4)-Bi(1)-O(1) 171.81(18)
O(1)-P(1)-O(4)#1 116.3(3)
O(1)-P(1)-O(3) 105.3(3)
O(4)#1-P(1)-O(3) 112.0(3)
O(1)-P(1)-O(2) 111.5(3)
O(4)#1-P(1)-O(2) 103.6(3)
O(3)-P(1)-O(2) 108.1(3)
P(1)-O(1)-Bi(1) 129.2(3)
C(13)-O(2)-P(1) 128.8(5)
C(17)-O(3)-P(1) 129.6(5)
P(1)#2-O(4)-Bi(1) 123.7(3)
C(2)-C(1)-C(6) 119.2(7)
C(2)-C(1)-Bi(1) 121.5(6)
C(6)-C(1)-Bi(1) 119.2(5)
C(1)-C(2)-C(3) 121.1(7)
C(2)-C(3)-C(4) 120.5(8)
C(3)-C(4)-C(5) 119.0(8)
C(6)-C(5)-C(4) 120.2(8)
C(5)-C(6)-C(1) 119.9(7)
C(8)-C(7)-C(11) 119.5(7)
C(8)-C(7)-Bi(1) 120.6(6)
C(11)-C(7)-Bi(1) 119.9(5)
C(7)-C(8)-C(12) 120.3(7)
C(10)-C(9)-C(12) 119.4(8)
C(9)-C(10)-C(11) 121.2(8)
C(10)-C(11)-C(7) 119.3(7)
C(8)-C(12)-C(9) 120.2(8)
O(2)-C(13)-C(15) 108.1(7)
O(2)-C(13)-C(16) 111.3(7)
C(15)-C(13)-C(16) 111.4(7)
O(2)-C(13)-C(14) 103.4(7)
C(15)-C(13)-C(14) 112.4(8)
C(16)-C(13)-C(14) 110.0(8)
O(3)-C(17)-C(18) 110.1(6)
O(3)-C(17)-C(20) 102.8(6)
C(18)-C(17)-C(20) 112.4(7)
O(3)-C(17)-C(19) 109.4(6)
C(18)-C(17)-C(19) 111.3(7)
C(20)-C(17)-C(19) 110.5(7)
Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z-1/2 #2 x,-y+1/2,z+1/2