Electronic Supplementary Information

Assembly of new Mo/Cu/S clusters from [Et₄N][Tp*MoS(S₄)] and Cu(I) salts: syntheses, structures and third-order nonlinear optical properties

Zhi-Yuan Zhang, a,b Wei-Jie Gong, a Fan Wang, a Min-Min Chen, a Li-Kuan Zhou, a Zhi-Gang Ren, *a,c Zhen-Rong Sun, d and Jian-Ping Lang*, a,b

a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China. Fax: +86 512 65882865; Tel: +86 512 65882865; E-mail: jpliang@suda.edu.cn

b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China

c Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 3 Research Link, Singapore 117602, Singapore

d Department of Physics, East China Normal University, Shanghai 200062, People’s Republic of China
Contents

Figure S1. (a) The negative-ion ESI mass spectrum of 2. (b) The negative-ion ESI mass spectrum of 3. (c) The negative-ion ESI mass spectrum of 4. (d) The negative-ion ESI mass spectrum of 5. (e) The negative-ion ESI mass spectrum of 6.

Figure S2. (a) The calculated isotope pattern (top) and the negative-ion ESI mass spectrum (below) of the [Tp*MoS3 + 2MeCN]⁻ anion of 3. (b) The calculated isotope pattern (top) and the negative-ion ESI mass spectrum (below) of the [Tp*MoS3 + 2MeCN]⁻ anion of 4. (c) The calculated isotope pattern (top) and the negative-ion ESI mass spectrum (below) of the [Tp*MoS2OCuCN]⁻ anion of 6.

Figure S3. (a) View of the cluster anion of 4. (b) View of the cluster anion of 5. All hydrogen atoms are omitted for clarity.

Figure S4. (a) The supercubic [MoS3Cu3]S4 core of 7. All Tp* groups and H atoms were omitted for clarity. Symmetry codes: A: –x, –y + 1/2, z; B: x + 1/4, –y + 1/4, –z + 3/4; C: –x + 1/4, y, –z + 3/4. (b) A representation of the supercubic cluster core of 7. Each red sphere represents one [Tp*MoS3Cu3] fragment while each yellow sphere represents one μ₃-S’ (S4) atoms.

Figure S5. (a) The DFWM signal for the DMF solutions of 4× 10⁻⁵ M for 3. (b) The DFWM signal for the DMF solutions of 4× 10⁻⁵ M for 4. (c) The DFWM signal for the DMF solutions of 4× 10⁻⁵ M for 5. (d) The DFWM signal for the DMF solutions of 4× 10⁻⁵ M for 6 with 80 fs and 1.5 mm cell. The black solid squares are experimental data, and the red solid curves are the theoretical fit.
Figure S1. (a) The negative-ion ESI mass spectrum of 2. (b) The negative-ion ESI mass spectrum of 3. (c) The negative-ion ESI mass spectrum of 4. (d) The negative-ion ESI mass spectrum of 5. (e) The negative-ion ESI mass spectrum of 6.
Figure S2. (a) The calculated isotope pattern (top) and the negative-ion ESI mass spectrum (bellow) of the \([\text{Tp*MoS}_3 + 2\text{MeCN}]^-\) anion of 3. (b) The calculated isotope pattern (top) and the negative-ion ESI mass spectrum (bellow) of the \([\text{Tp*MoS}_3 + 2\text{MeCN}]^-\) anion of 4. (c) The calculated isotope pattern (top) and the negative-ion ESI mass spectrum (bellow) of the \([\text{Tp*MoS}_2\text{OCuCN}]^-\) anion of 6.
Figure S3. (a) View of the cluster anion of 4. (b) View of the cluster anion of 5. All hydrogen atoms are omitted for clarity.
Figure S4. (a) The supercubic $\left[\text{Mo}_3\text{Cu}_3\right]_4\text{S}_4$ core of 7. All Tp* groups and H atoms were omitted for clarity. Symmetry codes: A: $-x, -y + 1/2, z$ B: $x + 1/4, -y + 1/4, -z + 3/4$ C: $-x + 1/4, y - 1/4, -z + 3/4$. (b) A representation of the supercubic cluster core of 7. Each red sphere represents one $\left[\text{Tp}^*\text{MoS}_3\text{Cu}_3\right]$ fragment while each yellow sphere represents one $\mu_3\text{-S'}$ (S4) atoms.
Figure S5. (a) The DFWM signal for the DMF solutions of 4×10^{-5} M for 3. (b) The DFWM signal for the DMF solutions of 4×10^{-5} M for 4. (c) The DFWM signal for the DMF solutions of 4×10^{-5} M for 5. (d) The DFWM signal for the DMF solutions of 4×10^{-5} M for 6 with 80 fs and 1.5 mm cell. The black solid squares are experimental data, and the red solid curves are the theoretical fit.