Electronic Supporting Information

Evidence of covalence in N-donor complex of Americium(III)

Christian Adam, Peter Kaden,* Björn B. Beele, Udo Müllich, Sascha Trumm, Andreas Geist, Petra J. Panak and Melissa A. Denecke

Contents

1.) LIFDI-MS spectra of 15N-labelled compounds ..2
2.) 1D 15N direct excitation spectrum of [Eu(15N$_2$-nPrBTP)$_3$(NO$_3$)$_3$] ...4
3.) 1D- and 2D-NMR spectra of [$_{243}$Am(nPrBTP)$_3$(NO$_3$)$_3$] ..5
1.) LIFDI-MS spectra of 15N-labelled compounds

a. 2,6-Bis(carboximidhydrazide)pyridine.

![Graph showing LIFDI-MS spectra of 2,6-Bis(carboximidhydrazide)pyridine.](Image)

Fig. S1 MS (LIFDI) of 2,6-Bis(carboximidhydrazide)pyridine in CH$_3$OH, 10% 15N-enrichment at secondary and primary amine position; ion mode: FD+; detail m/z range 155 to 235; m/z (M)$^+$ 193.18, (M+H)$^+$ 194.18, m/z (15N)$_2$M)$^+$ 195.19.

![Graph showing comparison of MS (LIFDI) spectra of 2,6-Bis(carboximidhydrazide)pyridine.](Image)

Fig. S2 Comparison of the MS (LIFDI) spectra of 2,6-Bis(carboximidhydrazide)pyridine in CH$_3$OH. Left: no isotopic labeling, right: 10% 15N-enrichment at secondary and primary amine position; ion mode: FD+ detail m/z range 186 to 199; m/z (M)$^+$ 193.19, m/z (15N)$_2$M)$^+$ 195.20.
b. 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine.

Fig. S3 MS (LIFDI) of 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine in CH₃OH, 10% 15N-enrichment at position 8 and 9; ion mode: FD+ detail m/z range 365 to 457; m/z (M)$^+$ 405.36, m/z (M+H)$^+$ 406.36, m/z (15N)₂M)$^+$ 407.36, m/z (15N)₄M)$^+$ 409.33.
2.) 1D 15N direct excitation spectrum of $[\text{Eu}^{15}\text{N}_2-\text{nPrBTP}]_3(\text{NO}_3)_3$

Fig. S4: Direct excitation 1D 15N spectrum of 15N-labelled $[\text{Eu}(\text{nPrBTP})_3]\text{([NO}_3)_3$ in 450 µL MeOD-d4 and 150 µL D$_2$O. Due to fast relaxation (PRE) of coordinated N$_8$, no signal for that nucleus was obtained. N$_1$ and N$_{12}$ are not 15N labelled and thus cannot be observed; the observed resonance signal corresponds to N$_9$. Acquisition details: TD 8k data points, relaxation delay D1 0.01 s, sweep width 4000 ppm, spectral offset 650 ppm, pre-scan delay 12.5 µs to avoid probehead ringing. Processing: window function em, 10 Hz line broadening, zero filling to 16k data points, linear back prediction of the first 128 data points out of all 8k datapoints to correct baseline distortions due to the wide sweep.
3.) 1D- and 2D-NMR spectra of \([^{243}\text{Am}(n\text{PrBTP})_3](\text{NO}_3)_3\)

Fig. S5 ^1H spectrum of \([^{243}\text{Am}(n\text{PrBTP})_3](\text{NO}_3)_3\) in MeOD-d4 and D$_2$O (3:1). The spectra have excellent resolution. Although the complex was found to be paramagnetic, the chemical shift is in the diamagnetic range with a linewidth (FWHM) of 1.9 Hz.

Fig. S6 Proton decoupled direct excitation ^{13}C spectrum of \([^{243}\text{Am}(n\text{PrBTP})_3](\text{NO}_3)_3\) in MeOD-d4 and D$_2$O (3:1).
Fig. S7 15N spectrum of 15N-labelled $[^{243}\text{Am}(n\text{PrBTP})_3](\text{NO}_3)$ in MeOD-d$_4$ and D$_2$O (3:1). To emphasize the differences between complexed (red) and uncomplexed (blue) ligand and to preclude any possible effects of free 243Am, a slight excess of ligand in the sample was used. From the narrow linewidth in all spectra, we conclude that no exchange between bound and free ligand occurs, since this would lead to significant line broadening. Insets are expanded view of the N_8 and N_9 signals.

Fig S8 1H, 13C-gHMBC of $[^{243}\text{Am}(n\text{PrBTP})_3](\text{NO}_3)_3$ in MeOD-d$_4$ and D$_2$O (3:1). The good resolution and high S/N at $J = 10$Hz allows complete assignment of all 13C resonances, including all quaternary carbon atoms.
Fig. S9 1H,15N-gHMQC spectrum of the doubly 15N-labelled nPrBTP in 243Am(nPrBTP)$_3$(NO$_3$)$_2$] in MeOD-d$_4$ and D$_2$O (3:1). Resonance signals from the complex are labelled in red, residual signals from uncomplexed ligand are in blue and labelled with an *.

Fig. S10 1H,15N-gHMQC spectrum of 243Am(nPrBTP)$_3$(NO$_3$)$_3$ in MeOD-d$_4$ and D$_2$O (3:1) at natural abundance of 15N. No resonances from free ligand are observed.