Supporting Information

Rhenium(I) tricarbonyl complex of 5,20-bis(p-tolyl)-10,15-bis(p-methoxyphenyl)-21-selenaporphyrin: First X-ray structural characterization of metal complex of 21-selenaporphyrin

Avijit Ghosh, a Rajesh Gonnade, b and Mangalampalli Ravikanth* a

Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India. E-mail: ravikanth@chem.iitb.ac.in

Central Material Characterization Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.

Contents

1. HR–MS spectrum of compound 3 S3
2. 1H NMR spectrum of compound 4 S4
3. 1H NMR spectrum of compound 3 S5
4. 77Se NMR spectrum of compound 4 S6
5. 77Se NMR spectrum of compound 3 S7
6. 13C NMR spectrum of compound 4 recorded in CDCl3 S8
7. 13C NMR spectrum of compound 3 recorded in CDCl3 S9
8. IR spectrum of compound 3.... S10
9. The possible inter-conversion pathway between two isomers (A and B) via a common intermediate C of compound 3 in solution S11
10. Comparison of 1H NMR spectra of compound 1 and free base STPPh recorded in CDCl3 S12
11. Comparison of 1H NMR spectra of compound 3 recorded at different temperatures in CDCl$_3$
S13

12. 1H NMR titration of compound 1
S14

13. The possible isomers of compound 3 under protonation condition in solution showing the arrest of fluxional behavior of compound 3
S15

14. 1H–1H COSY spectrum of compound 3 in presence of TFA
S16

15. Partial 1H–1H COSY spectrum (expanded region) of compound 3
S17

16. 1H NMR titration spectra of aryl –CH$_3$ and –OCH$_3$ region for compound 3 with addition of increasing amounts of TFA in CDCl$_3$
S18

17. 13C NMR spectrum of compound 3 recorded in CDCl$_3$ in presence of TFA
S19

18. Comparison of Soret band and Q-band spectra of compound 3, 3+TFA, [(3+TFA)+TEA], 4 and 4+TFA recorded in CDCl$_3$
S20
Figure S1. HR–MS spectrum of compound 3.
Figure S2. 1H NMR spectrum of compound 4 recorded in CDCl$_3$ at room temperature.
Figure S3. 1H NMR spectrum of compound 3 recorded in CDCl$_3$ at room temperature.
Figure S4. ^{77}Se NMR spectrum of free base 4 recorded in CDCl$_3$ at room temperature.
Figure S5. 77Se NMR spectrum of compound 3 recorded in CDCl$_3$ at room temperature.
Figure S6. 13C NMR spectrum of free base porphyrin 4 recorded in CDCl$_3$ at room temperature.
Figure S7. 13C NMR spectrum of compound 3 recorded in CDCl$_3$ at room temperature.
Figure S8. Partial IR absorption spectrum of compound 3 recorded as KBr disc showing carbonyl stretching.
Figure S9. The possible inter-conversion pathway between two isomers (A and B) via a common intermediate C of compound 3 in solution. The average structure C possesses a plane of symmetry.
Figure S10. Comparison of 1H NMR spectra of compound 1 with free base porphyrin STPPH recorded in CDCl$_3$ at room temperature (* residual solvent peak).
Figure S11. Comparison of 1H NMR spectra of compound 3 recorded in CDCl$_3$ at two different temperatures (* residual solvent peak).
Figure S12. 1H NMR titration of compound 1 by increasing addition of trifluoroacetic acid (TFA) in CDCl$_3$ recorded at room temperature.
Figure S13. Formation of the possible isomers (D or E) of compound 1 in presence of trifluoroacetic acid (TFA) showing the arrest of fluxional behavior of compound 1 in solution.
Figure S14. 1H–1H COSY spectrum of compound 3 showing the cross-peak connectivities of meso-aryl groups and β-pyrrole protons recorded in CDCl$_3$ under protonation conditions (in presence of TFA) at room temperature.
Figure S15. Partial 1H–1H COSY spectrum (expanded region) of compound 3 showing the cross-peak connectivities of meso-aryl groups and β-pyrrole protons recorded in CDCl$_3$ under protonation conditions (in presence of TFA) at room temperature.
Figure S16. Partial 1H NMR titration spectra of aryl $-\text{CH}_3$ and $-\text{OCH}_3$ region for compound 3 upon addition of increasing amounts of TFA in CDCl$_3$ recorded at room temperature.
Figure S17. 13C NMR spectrum of compound 3 recorded in CDCl$_3$ at room temperature.
Figure S18. Comparison of (a) Soret and (b) Q-band spectra of compound 3 (black), free base porphyrin 4 (blue), 3+TFA (red), 4+TFA (green) and [(3+TFA)+TEA]a (pink) recorded in CH$_2$Cl$_2$ at room temperature. Concentrations used were ~ 10^{-5} M and 10^{-4} M for Soret and Q-band respectively. a TFA = trifluoroacetic acid and TEA = triethylamine.