Electronic Supplementary Information

Morphology and structure controlled synthesis of ruthenium nanoparticles in oleylamine

Feng Ye, a Hui Liu, a Jinhua Yang, c Hongbin Cao d* and Jun Yang a *

a State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China 100190. Fax: 86-10-8254 4814; Tel: 86-10-8254 4915; Email: jyang@mail.ipe.ac.cn

b University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, China 100049

c Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669

d Research Centre for Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China 100190. Fax: 86-10-82544845; Tel: 86-10-82544845; Email: hbcao@home.ipe.ac.cn

Financial support from the 100 Talents Program of the Chinese Academy of Sciences, National Natural Science Foundation of China (No.: 21173226, 21106151), and State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences (MPCS-2012-A-11, MPCS-2011-D-08, MPCS-2010-C-02) is gratefully acknowledged.
Fig. S1 3p XPS spectrum of Ru nanoparticles synthesized directly in oleylamine at 320°C.

Fig. S2 TEM (a,c) and HRTEM images (b,d) of Ag (a,b) and Au (c,d) seed particles synthesized in oleylamine at elevated temperature.
Fig. S3 TEM (a) and HRTEM image (b) of bimetallic PtRu nanoparticles prepared in oleylamine in the absence of Au seed particles.

Fig. S4 Cyclic voltammograms of Au-PtRu nanodendrites (a), physical mixture of PtRu multipods and Au nanoparticles (b), and PtRu multipods (c) as-prepared in oleylamine in argon-purged HClO4 (0.1 M) with methanol (1 M).