Electronic Supplementary Information

Comparison of ancillary ligand effects between 2,2'-bipyridine and 2-(2'-pyridyl)phenyl in the linkage and bridging isomerism of 5-methyltetrazolato iridium(III) and/or rhodium(III) complexes

Asuka Takayama, Takayoshi Suzuki,* Miyu Ikeda, Yukinari Sunatsuki and Masaaki Kojima

Department of Chemistry, Faculty of Science, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530, Japan

Contents:

- **Fig. S1** An ORTEP (50% probability level, H-atoms are omitted for clarity) of $[Cp*Ir(ppy)(MeCN_4-\kappa N^l)]$ (3).
- **Fig. S2** Infrared spectra (Nujol mull) of bulk samples of [Cp*Ir(bpy)(MeCN₄)]PF₆ (1: black, lower) and [Cp*Rh(bpy)(MeCN₄)]PF₆ (2: red, upper).
- **Fig. S3** An ORTEP (50% probability level, H-atoms are omitted for clarity) of the cationic part in [{Cp*Rh(bpy)}₂(μ-MeCN₄)](PF₆)₃•CH₃CN (**6**•CH₃CN).
- **Fig. S4** ¹H NMR (CDCl₃, 300 MHz, 22 °C) spectrum of $[{Cp*Rh(bpy)}_2(\mu-MeCN_4)](PF_6)_3$ (6).
- Fig. S5 ¹H NMR (CDCl₃, 300 MHz, 22 °C) spectra of (*a*) [{Cp*Ir(ppy)}₂(μ -MeCN₄)]PF₆ (7) and (*b*) [{Cp*Ir(ppy)}₂(μ -MeCN₄)]BF₄ (7B).
- **Fig. S6** An ORTEP (50% probability level, H-atoms are omitted for clarity) of the cationic part in $[{Cp*Rh(ppy)}_2(\mu-MeCN_4-\kappa N^1:\kappa N^3)]PF_6•CH_2Cl_2•Et_2O$ (**8**•CH_2Cl_2•Et_2O).
- Fig. S7 ¹H NMR (300 MHz, 22 °C) spectra of $[{Cp*Rh(ppy)}_2(\mu-MeCN_4)]PF_6$ (8) in (*a*) CD₃CN, (*b*) CD₂Cl₂, and (*c*) CDCl₃.
- **Fig. S8** ¹H NMR (CDCl₃, 300 MHz, 22 °C) spectrum of [{Cp*Rh(ppy)}₂(μ-MeCN₄)]BF₄ (**8B**).
- Fig. S9 ORTEP (50% probability level, H atoms omitted for clarity) of the cation in [Cp*Ir(bpy)(μ-MeCN₄)Rh(bpy)Cp*](PF₆)₃•CH₃CN (9•CH₃CN: one of the possible orientations for the disordered Ir/Rh atoms).
- **Fig. S10** ¹H NMR spectra (at 22 °C, 300 MHz) of a CD₃CN solution of **11** (the isolated crystals): (*a*) immediately after dissolving and (*b*) after standing at room temperature for 24 h.
- **Fig. S11** ORTEPs (50% probability level, H atoms omitted for clarity) of the cationic parts in (*a*) [Cp*Ir-(ppy){ μ -MeCN₄- κN^1 (Ir): κN^3 (Rh)}Rh(ppy)Cp*]BF₄• $^1/_2$ CH₃CN• $^1/_4$ H₂O (**12B**• $^1/_2$ CH₃CN• $^1/_4$ H₂O) and (*b*) [Cp*Ir(ppy){ μ -MeCN₄- κN^1 (Ir): κN^3 (Rh)}Rh(ppy)Cp*]BPh₄•CH₂Cl₂•2Et₂O (**12BP**•CH₂Cl₂•2Et₂O).
- Fig. S12 ¹H NMR spectra (at 22 °C, 300 MHz) of CDCl₃ solutions of (*a*) the recrystallised sample of [Cp*Ir(ppy)(μ-MeCN₄)Rh(ppy)Cp*]BF₄ (12B), (*b*) the crude reaction products of [Cp*Ir(ppy)(μ-MeCN₄)Rh(ppy)Cp*]PF₆ (12) resulting from the addition of NH₄PF₆, and (*c*) the recrystallised sample of [Cp*Ir(ppy)(μ-MeCN₄)Rh(ppy)Cp*]BPh₄•CH₂Cl₂•2Et₂O (12BP•CH₂Cl₂•2Et₂O).
- Table S1 Crystallographic data for complexes.
- Table S2–S6Selected bond lengths and angles.

Fig. S1 An ORTEP (50% probability level, H-atoms are omitted for clarity) of $[Cp*Ir(ppy)(MeCN_4-\kappa N^1)]$ (3).

Fig. S2 Infrared spectra (Nujol mull) of bulk samples of $[Cp*Ir(bpy)(MeCN_4)]PF_6$ (1: black, lower) and $[Cp*Rh(bpy)(MeCN_4)]PF_6$ (2: red, upper).

Fig. S3 An ORTEP (50% probability level, H-atoms are omitted for clarity) of the cationic part in $[{Cp*Rh(bpy)}_2(\mu-MeCN_4)](PF_6)_3 \cdot CH_3CN$ (6 · CH₃CN).

Fig. S4 ¹H NMR (CDCl₃, 300 MHz, 22 °C) spectrum of [{Cp*Rh(bpy)}₂(μ -MeCN₄)](PF₆)₃ (6).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Fig. S5 ¹H NMR (CDCl₃, 300 MHz, 22 °C) spectra of (*a*) [{Cp*Ir(ppy)}₂(μ -MeCN₄)]PF₆ (**7**) and (*b*) [{Cp*Ir(ppy)}₂(μ -MeCN₄)]BF₄ (**7B**).

Fig. S6 An ORTEP (50% probability level, H-atoms are omitted for clarity) of the cationic part in $[{Cp*Rh(ppy)}_2(\mu-MeCN_4-\kappa N^1:\kappa N^3)]PF_6•CH_2Cl_2•Et_2O$ (8•CH₂Cl₂•Et₂O).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

Fig. S7 ¹H NMR (300 MHz, 22 °C) spectra of $[{Cp*Rh(ppy)}_2(\mu-MeCN_4)]PF_6$ (8) in (*a*) CD₃CN, (*b*) CD₂Cl₂, and (*c*) CDCl₃.

Fig. S8 ¹H NMR (CDCl₃, 300 MHz, 22 °C) spectrum of $[{Cp*Rh(ppy)}_2(\mu-MeCN_4)]BF_4$ (**8B**).

Fig. S9 ORTEP (50% probability level, H atoms omitted for clarity) of the cation in $[Cp*Ir(bpy)(\mu-MeCN_4)Rh(bpy)Cp*](PF_6)_3 \cdot CH_3CN$ (9 \cdot CH_3CN: one of the possible orientations for the disordered Ir/Rh atoms).

Fig. S10 ¹H NMR spectra (at 22 °C, 300 MHz) of a CD₃CN solution of **11** (the isolated crystals): (*a*) immediately after dissolving and (*b*) after standing at room temperature for 24 h.

Fig. S11 ORTEPs (50% probability level, H atoms omitted for clarity) of the cationic parts in (*a*) $[Cp*Ir(ppy){\mu-MeCN_4-\kappa N^1(Ir):\kappa N^3(Rh)}Rh(ppy)Cp*]BF_4\bullet^1/_2CH_3CN\bullet^1/_4H_2O$ (**12B** $\bullet^1/_2CH_3CN$ $\bullet^1/_4H_2O$) and (*b*) $[Cp*Ir(ppy){\mu-MeCN_4-\kappa N^1(Ir):\kappa N^3(Rh)}Rh(ppy)Cp*]BPh_4\bullet CH_2Cl_2\bullet 2Et_2O$ (**12BP** \bullet CH₂Cl₂•2Et₂O).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

Fig. S12 ¹H NMR spectra (at 22 °C, 300 MHz) of CDCl₃ solutions of (*a*) the recrystallised sample of $[Cp*Ir(ppy)(\mu-MeCN_4)Rh(ppy)Cp*]BF_4$ (**12B**), (*b*) the crude reaction products of $[Cp*Ir(ppy)(\mu-MeCN_4)Rh(ppy)Cp*]PF_6$ (**12**) resulting from the addition of NH₄PF₆, and (*c*) the recrystallised sample of $[Cp*Ir(ppy)(\mu-MeCN_4)Rh(ppy)Cp*]BPh_4$ •CH₂Cl₂•2Et₂O (**12BP**•CH₂Cl₂•2Et₂O).

Table S1Crystallographic data for complexes.

	2	3	$4 \cdot CH_2Cl_2$	6•CH ₃ CN	8	8•CH ₂ Cl ₂ •Et ₂ O
Chemical formula	C ₂₂ H ₂₆ F ₆ N ₆ PRh	C ₂₃ H ₂₆ IrN ₅	C ₂₄ H ₂₈ Cl ₂ N ₅ Rh	$C_{44}H_{52}F_{18}N_9P_3Rh_2$	C44H49F6N6PRh2	$C_{49}H_{61}Cl_2F_6N_6OPRh_2$
Formula weight	622.37	564.69	560.32	1347.68	1012.68	1171.73
T / K	193(2)	192(2)	191(2)	193(2)	193(2)	193(2)
Crystal color and shape	yellow, block	yellow, columnar	orange, block	yellow, plate	yellow, plate	yellow, block
Size of specimen / mm	$0.15 \times 0.15 \times 0.12$	$0.25 \times 0.06 \times 0.06$	$0.4 \times 0.4 \times 0.2$	$0.5\times0.3\times0.1$	$0.2\times0.1\times0.1$	$0.3\times0.2\times0.2$
Crystal system	monoclinic	orthorhombic	monoclinic	monoclinic	triclinic	triclinic
Space group, Z	$P2_1/n, 4$	Pbca, 8	<i>C</i> 2/ <i>c</i> , 8	$P2_1/c, 4$	<i>P</i> 1, 2	<i>P</i> 1, 2
<i>a</i> / Å	8.8647(6)	8.7519(5)	34.5018(19)	12.9484(6)	13.0022(7)	13.8507(12)
<i>b</i> / Å	28.4028(15)	14.9783(7)	7.6323(5)	21.5240(9)	13.3883(8)	14.1135(12)
<i>c</i> / Å	9.9019(6)	31.9899(14)	22.3074(15)	20.3894(9)	14.0886(8)	14.1254(12)
lpha / °	90	90	90	90	71.928(3)	114.573(2)
eta / °	93.770(4)	90	125.421(2)	108.669(1)	80.972(2)	96.515(3)
γ/\circ	90	90	90	90	63.631(2)	95.075(3)
U / Å ³	2487.7(3)	4193.5(3)	4787.0(5)	5383.6(4)	2088.4(2)	2466.7(4)
$D_{ m calc}$ / Mg m ⁻³	1.662	1.789	1.555	1.663	1.610	1.578
μ (Mo K α) / mm ⁻¹	0.819	6.387	0.959	0.806	0.896	0.876
R _{int}	0.0436	0.0455	0.0222	0.0309	0.0653	0.0256
No. reflns / params.	5662/328	4801/268	5456/296	12324/682	9454/522	11230/579
$R1 (F^2: F_o^2 > 2\sigma(F_o^2))$	0.0497	0.0208	0.0246	0.0319	0.0613	0.0454
$wR2$ (F^2 : all data)	0.1219	0.0500	0.0666	0.0883	0.1833	0.1291
S	1.058	1.023	1.064	1.085	1.147	1.074

Table S1 (Continued)

8	$\mathbf{8B} \bullet^{1}/_{2} \mathrm{CH}_{3} \mathrm{CN} \bullet^{1}/_{4} \mathrm{H}_{2} \mathrm{O}$	9∙CH ₃ CN	10• H ₂ O	11	$12B\bullet^{1}/_{2}CH_{3}CN\bullet^{1}/_{4}H_{2}O$	$12BP \bullet CH_2Cl_2 \bullet 2Et_2O$
Chemical formula	C ₄₅ H ₅₁ BF ₄ N _{6.5} O _{0.25} Rh	n ₂ C ₄₄ H ₅₂ F ₁₈ IrN ₉ P ₃ Rh	C ₄₃ H ₅₁ F ₁₂ IrN ₇ OP ₂ Rh	$C_{43}H_{49}F_{12}IrN_7P_2Rh$	C ₄₅ H ₅₁ BF ₄ IrN _{6.5} O _{0.25} R	h C ₇₇ H ₉₁ BCl ₂ IrN ₆ O ₂ Rł
Formula weight	979.55	1436.97	1266.96	1248.94	1068.84	1509.38
T/\mathbf{K}	185(2)	183(2)	193(2)	191(2)	192(2)	192(2)
Crystal color and shap	be orange, block	yellow, needle	yellow, needle	yellow, needle	yellow, plate	orange, plate
Size of specimen / mr	m $0.4 \times 0.4 \times 0.2$	$0.2\times0.1\times0.1$	$0.3\times0.15\times0.15$	$0.35\times0.15\times0.1$	$0.4 \times 0.2 \times 0.1$	$0.35 \times 0.3 \times 0.05$
Crystal system	triclinic	monoclinic	tetragonal	tetragonal	triclinic	triclinic
Space group, Z	$P\overline{1}, 2$	$P2_1/c, 4$	$P\overline{4}2_1c, 8$	$P\overline{4}2_{1}c, 8$	<i>P</i> 1, 2	<i>P</i> 1, 2
<i>a</i> / Å	11.6756(8)	12.9890(4)	26.125(1)	26.0416(5)	11.6443(9)	13.7305(4)
<i>b</i> / Å	14.2627(9)	21.3738(5)			14.1518(8)	15.6553(9)
<i>c</i> / Å	14.4068(8)	20.4689(4)	14.4637(5)	14.3561(3)	14.4628(8)	18.2761(8)
α / \circ	99.704(2)	90	90	90	99.082(2)	67.466(3)
β / °	111.325(2)	109.311(1)	90	90	111.484(3)	76.436(2)
γ/°	96.083(2)	90	90	90	96.501(4)	82.757(2)
U / Å ³	2166.0(2)	5363.0(2)	9871.8(6)	9735.8(3)	2151.6(2)	3524.5(3)
$D_{ m calc}$ / Mg m ⁻³	1.502	1.780	1.705	1.704	1.650	1.422
μ (Mo K α) / mm ⁻¹	0.820	2.981	3.179	3.220	3.531	2.246
R _{int}	0.0217	0.0842	0.0737	0.0405	0.0349	0.0383
No. reflns / params.	9821/515	12261/670	11301/576	11104/567	9779/515	16053/811
$R1 (F^2: F_o^2 > 2\sigma(F_o^2))$) 0.0404	0.0477	0.0508	0.0494	0.0463	0.0560
$wR2$ (F^2 : all data)	0.1079	0.1354	0.1389	0.1507	0.1241	0.1664
S	1.055	1.126	1.141	1.038	1.123	1.077

M = Ir or Rh	1^a	2	3	4•CH ₂ Cl ₂
M1–N1 (MeCN ₄)			2.091(2)	2.0840(17)
M1–N2 (MeCN ₄)	2.075(4)	2.079(3)		
M1-N31 (bpy)	2.096(4)	2.106(3)	—	_
M1-N40 (bpy)	2.086(4)	2.094(3)	—	_
M1–N21 (ppy)			2.093(2)	2.0932(16)
М1-С31 (рру)			2.053(3)	2.0442(19)
M1–C11 (Cp*)	2.184(5)	2.183(4)	2.176(3)	2.1883(19)
M1–C12 (Cp*)	2.156(5)	2.148(4)	2.170(3)	2.2464(19)
M1–C13 (Cp*)	2.184(5)	2.177(4)	2.180(3)	2.2335(19)
M1–C14 (Cp*)	2.176(5)	2.173(4)	2.233(3)	2.1744(19)
M1-C15 (Cp*)	2.166(5)	2.158(4)	2.252(3)	2.1722(19)
N31-M1-N40	76.57(15)	77.06(12)		_
N21-M1-C31			77.97(11)	78.69(7)
N31-M1-N2	86.57(14)	87.82(12)		
N40-M1-N2	85.27(15)	86.63(12)		
N21-M1-N1			84.29(10)	86.40(6)
C31-M1-N1			91.42(10)	91.04(7)
M1-N2-N1	125.3(3)	125.4(2)		—
M1-N2-N3	123.0(3)	123.3(3)	—	—
M1-N1-N2	_	—	117.94(18)	116.62(12)
M1-N1-C5			135.4(2)	134.28(13)
N1-N2-N3	111.5(4)	111.1(3)	107.8(3)	108.06(16)
C5-N1-N2	103.1(4)	103.3(3)	106.2(2)	105.92(16)

Table S2	Selected bond	lengths (<i>l</i> /Å) and angles	$(\phi/^{\circ})$) of com	olexes 1–4.
----------	---------------	-----------------------	--------------	-------------------	----------	-------------

^a M. Kotera, Y. Sekioka and T. Suzuki, *Inorg. Chem.*, 2008, **47**, 3498–3508.

M = Ir or Rh	5• 2H ₂ O ^{<i>a</i>}	6 •CH₃CN	M1 = Ir1 / Rh2 $M2 = Rh1 / Ir2$	9•CH₃CN
M1-N1 (MeCN ₄)	2.108(4)	2.138(2)	M2–N4 (MeCN ₄)	2.133(4)
M1-N31 (bpy)	2.093(4)	2.104(2)	M2–N41 (bpy)	2.092(4)
M1-N40 (bpy)	2.094(4)	2.110(2)	M2-N50 (bpy)	2.108(4)
M2–N3 (MeCN ₄)	2.092(3)	2.092(2)	M1–N2 (MeCN ₄)	2.094(4)
M2-N41 (bpy)	2.093(4)	2.096(2)	M1–N31 (bpy)	2.099(4)
M2-N50 (bpy)	2.094(4)	2.104(2)	M1-N40 (bpy)	2.113(5)
M1-C11 (Cp*)	2.164(4)	2.160(2)	M1-C11 (Cp*)	2.151(6)
M1-C12 (Cp*)	2.161(5)	2.165(2)	M1-C12 (Cp*)	2.166(5)
M1-C13 (Cp*)	2.171(5)	2.159(2)	M1-C13 (Cp*)	2.172(5)
M1-C14 (Cp*)	2.181(4)	2.184(2)	M1-C14 (Cp*)	2.160(5)
M1-C15 (Cp*)	2.169(4)	2.171(2)	M1-C15 (Cp*)	2.168(5)
M2-C21 (Cp*)	2.165(4)	2.162(2)	M2-C21 (Cp*)	2.162(5)
M2–C22 (Cp*)	2.161(4)	2.166(3)	M2-C22 (Cp*)	2.171(5)
M2-C23 (Cp*)	2.169(4)	2.161(3)	M2-C23 (Cp*)	2.163(5)
M2–C24 (Cp*)	2.168(4)	2.174(3)	M2–C24 (Cp*)	2.175(5)
M2–C25 (Cp*)	2.195(5)	2.152(3)	M2-C25 (Cp*)	2.152(5)
N31-M1-N40	76.77(14)	76.89(8)	N50-M2-N41	77.06(17)
N31-M1-N1	89.68(14)	91.33(8)	N50-M2-N4	81.91(17)
N40-M1-N1	80.83(14)	81.90(8)	N41-M2-N4	90.36(17)
N41-M2-N50	76.62(15)	76.95(9)	N31-M1-N40	77.12(18)
N41-M2-N3	85.85(14)	86.28(8)	N31-M1-N2	85.62(17)
N50-M2-N3	85.24(14)	85.98(8)	N40-M1-N2	85.56(17)
M1-N1-N2	115.3(3)	114.30(15)	M2-N4-N3	114.2(3)
M1-N1-C5	135.9(3)	138.69(17)	M2-N4-C5	136.8(4)
C5-N1-N2	108.7(4)	106.7(2)	C5-N4-N3	108.7(4)
M2-N3-N2	123.1(3)	124.52(16)	M1-N2-N1	123.2(3)
M2-N3-N4	123.0(3)	123.34(16)	M1-N2-N3	123.3(3)
N2-N3-N4	111.8(4)	112.0(2)	N1-N2-N3	113.2(4)

Table S3	Selected bond lengths	$(l/Å)$ and angles $(\phi/\circ$) of complexes 5•2H ₂	O, $6 \cdot CH_3 CN$, and $9 \cdot CH_3 CN$.

^a M. Kotera, Y. Sekioka and T. Suzuki, *Inorg. Chem.*, 2008, **47**, 3498–3508.

	8	8•CH ₂ Cl ₂ •Et ₂ O	$12B\bullet^1/_2CH_3CN\bullet^1/_4H_2O$
Rh1–N1	2.110(5)		_
Rh1–N2	_	2.090(3)	2.092(3)
Rh1-N31	2.071(6)	2.086(3)	2.077(3)
Rh1-C41	2.061(7)	2.035(4)	2.042(3)
Rh2–N4	2.101(6)	2.092(3)	2.098(2)
Rh2-N42	2.092(5)	2.079(3)	2.093(3)
Rh2C52	2.064(7)	2.055(3)	2.054(3)
Rh1C11	2.210(7)	2.249(4)	2.245(3)
Rh1-C12	2.165(7)	2.160(4)	2.167(3)
Rh1-C13	2.204(7)	2.189(4)	2.186(3)
Rh1C14	2.213(8)	2.166(4)	2.158(3)
Rh1-C15	2.190(7)	2.270(4)	2.253(3)
Rh2C21	2.183(6)	2.173(4)	2.179(3)
Rh2C22	2.207(7)	2.227(4)	2.249(3)
Rh2-C23	2.235(7)	2.221(4)	2.230(3)
Rh2C24	2.187(6)	2.204(4)	2.188(3)
Rh2-C25	2.141(7)	2.180(4)	2.174(3)
N31-Rh1-C41	79.2(3)	78.99(15)	78.83(15)
N31-Rh1-N1	85.3(2)		
N31-Rh1-N2	_	88.25(12)	87.92(11)
C41-Rh1-N1	91.8(2)	—	_
C41-Rh1-N2	_	83.29(14)	86.23(12)
N42-Rh2-C52	78.4(3)	78.77(14)	78.73(14)
N42-Rh2-N4	86.4(2)	92.12(12)	87.95(10)
C52-Rh2-N4	94.4(3)	88.13(12)	92.32(11)
Rh1-N1-N2	118.4(4)	—	_
Rh1-N1-C5	135.4(5)	—	_
C5-N1-N2	106.2(5)	103.7(3)	103.9(3)
Rh1-N2-N3	_	125.1(2)	125.5(2)
Rh1-N2-N1	_	122.2(2)	122.58(19)
N1-N2-N3	108.9(5)	112.2(3)	111.7(3)
Rh2-N4-N3	119.2(4)	118.7(2)	116.17(19)
Rh2-N4-C5	133.5(5)	133.7(3)	135.3(2)
N3 N4 C5	106 9(6)	106 4(3)	106 9(2)

Table S4 Selected bond lengths (l/Å) and angles (ϕ/\circ) of complexes **8**, **8**•CH₂Cl₂•Et₂O and **8B**•¹/₂CH₃CN•¹/₄H₂O.

10• H ₂ O		11	
Ir1–N2	2.078(7)	Rh1–N3	2.104(6)
Ir1-N31	2.082(8)	Rh1-N42	2.098(7)
Ir1-N40	2.108(8)	Rh1-N51	2.082(8)
Rh1–N4	2.122(7)	Ir1–N1	2.094(7)
Rh1-N41	2.102(7)	Ir1-N31	2.074(6)
Rh1-C51	2.054(8)	Ir1-C41	2.054(7)
Ir1C11	2.197(8)	Ir1-C11	2.146(9)
Ir1-C12	2.191(9)	Ir1-C12	2.230(9)
Ir1-C13	2.183(9)	Ir1-C13	2.237(9)
Ir1C14	2.185(9)	Ir1-C14	2.162(8)
Ir1-C15	2.158(9)	Ir1-C15	2.174(8)
Rh1-C21	2.176(9)	Rh1-C21	2.176(8)
Rh1-C22	2.170(9)	Rh1-C22	2.159(8)
Rh1-C23	2.230(8)	Rh1-C23	2.149(8)
Rh1-C24	2.227(8)	Rh1-C24	2.165(8)
Rh1-C25	2.156(9)	Rh1-C25	2.205(8)
N31–Ir1–N40	76.8(3)	N42-Rh1-N51	77.9(3)
N31-Ir1-N2	82.8(3)	N42-Rh1-N3	87.3(3)
N40-Ir1-N2	86.7(3)	N51-Rh1-N3	83.5(3)
N41-Rh1-C51	77.9(3)	N31-Ir1-C41	78.4(3)
N41-Rh1-N4	87.9(3)	N31-Ir1-N1	87.3(2)
C51-Rh1-N4	92.9(3)	C41–Ir1–N1	93.4(3)
Ir1-N2-N1	120.3(5)	Rh1-N3-N4	122.0(5)
Ir1-N2-N3	126.9(5)	Rh1-N3-N2	125.7(5)
N1-N2-N3	111.9(6)	N4-N3-N2	111.3(6)
Rh1-N4-N3	116.8(5)	Ir1-N1-N2	118.5(5)
Rh1-N4-C5	134.2(5)	Ir1-N1-C5	133.1(5)
C5-N4-N3	108.0(7)	C5-N1-N2	107.5(7)

Table S5 Selected bond lengths (l/A) and angles ($\phi/^{\circ}$) of complexes 10•H ₂ O and 11.	Table S5	Selected bond lengths (<i>l</i> /	l/Å) and angles ((ϕ°) of complexes 10•H ₂ O and 11.
---	----------	------------------------------------	-------------------	---

Table S6	Selected bond lengths ($l/Å$) and angles (ϕ/\circ) of complexes $12B \cdot \frac{1}{2}CH_3CN \cdot \frac{1}{4}H_2O$ and
12BP•CH2	$_{2}Cl_{2}$ •2Et $_{2}O$.

$12B\bullet^1/_2CH_3CN\bullet^1/_4H_2O$		12BP• CH ₂ Cl ₂ •2Et ₂	$12BP \bullet CH_2Cl_2 \bullet 2Et_2O$		
Ir1–N1	2.086(4)	Ir1–N1	2.099(5)		
Ir1-N31	2.094(5)	Ir1-N41	2.090(5)		
Ir1-C41	2.061(6)	Ir1-C31	2.043(6)		
Rh1–N3	2.098(5)	Rh1–N3	2.082(5)		
Rh1-N42	2.082(6)	Rh1–N52	2.093(5)		
Rh1-C52	2.046(6)	Rh1–C42	2.055(6)		
Ir1–C11	2.183(6)	Ir1–C11	2.233(6)		
Ir1-C12	2.157(6)	Ir1–C12	2.251(6)		
Ir1–C13	2.184(6)	Ir1–C13	2.164(7)		
Ir1C14	2.245(6)	Ir1–C14	2.148(7)		
Ir1–C15	2.220(6)	Ir1–C15	2.161(6)		
Rh1-C21	2.176(6)	Rh1-C21	2.195(6)		
Rh1-C22	2.152(6)	Rh1–C22	2.168(6)		
Rh1-C23	2.254(6)	Rh1–C23	2.228(6)		
Rh1-C24	2.243(6)	Rh1-C24	2.222(6)		
Rh1-C25	2.166(6)	Rh1–C25	2.200(6)		
N31-Ir1-C41	77.8(2)	N41–Ir1–C31	78.6(2)		
N31-Ir1-N1	86.28(19)	N41–Ir1–N1	88.15(19)		
C41-Ir1-N1	91.4(2)	C31–Ir1–N1	92.3(2)		
N42-Rh1-C52	78.5(3)	N52-Rh1-C42	78.5(2)		
N42-Rh1-N3	87.7(2)	N52-Rh1-N3	87.4(2)		
C52-Rh1-N3	86.4(2)	C42-Rh1-N3	84.9(2)		
Ir1-N1-N2	117.3(4)	Ir1-N1-N2	117.4(4)		
Ir1-N1-C5	133.8(4)	Ir1-N1-C5	133.5(4)		
C5-N1-N2	107.3(5)	C5-N1-N2	106.7(5)		
Rh1–N3–N4	122.4(4)	Rh1–N3–N4	121.1(4)		
Rh1–N3–N2	124.9(4)	Rh1–N3–N2	126.5(4)		
N4-N3-N2	112.3(5)	N4-N3-N2	112.1(5)		