Structure, EPR/ENDOR and DFT characterisation of a [CuII(en)$_2$](OTf)$_2$ complex.

E. Louise Hazeland, Emma Carter*, Damien M. Murphy and Benjamin D. Ward*

Electronic Supplementary Information

Contents

1. X-ray data.
2. Computational data.
3. Additional X-band CW and pulsed EPR and ENDOR data.

<table>
<thead>
<tr>
<th>Table S1. X-ray data for Cu(en)$_2$$_2$ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
</tr>
<tr>
<td>Formula weight</td>
</tr>
<tr>
<td>Crystal size/mm</td>
</tr>
<tr>
<td>Crystal system</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>a/Å</td>
</tr>
<tr>
<td>b/Å</td>
</tr>
<tr>
<td>c/Å</td>
</tr>
<tr>
<td>α/°</td>
</tr>
<tr>
<td>β/°</td>
</tr>
<tr>
<td>γ/°</td>
</tr>
<tr>
<td>V/Å3</td>
</tr>
</tbody>
</table>
2. Computational data

All calculations were performed using the Gaussian 09 program. The structure of [Cu(en)₂(OTf)₂] was optimised without geometry restraints using the unrestricted B3LYP hybrid functional, employing the 6-31+G(d,p) basis set on all atoms. The geometry optimisation was followed by a frequency calculation to ascertain the nature of the stationary point (minimum vs. saddle point). TD-DFT calculations were performed on the optimised geometry.

Cartesian coordinates of [Cu(en)₂](OTf)₂ 1.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-0.00106</td>
<td>0.0005</td>
<td>-0.00075</td>
</tr>
<tr>
<td>H</td>
<td>0.60215</td>
<td>1.61567</td>
<td>1.85931</td>
</tr>
<tr>
<td>H</td>
<td>-1.06016</td>
<td>1.55655</td>
<td>1.80837</td>
</tr>
<tr>
<td>H</td>
<td>1.37653</td>
<td>1.05136</td>
<td>-1.84765</td>
</tr>
<tr>
<td>H</td>
<td>-0.22125</td>
<td>1.48595</td>
<td>-2.0889</td>
</tr>
<tr>
<td>S</td>
<td>3.27949</td>
<td>-0.58813</td>
<td>-0.13393</td>
</tr>
<tr>
<td>S</td>
<td>-3.28021</td>
<td>0.58815</td>
<td>0.13715</td>
</tr>
<tr>
<td>H</td>
<td>1.06163</td>
<td>-1.55383</td>
<td>-1.80728</td>
</tr>
<tr>
<td>H</td>
<td>-0.60063</td>
<td>-1.61515</td>
<td>-1.86255</td>
</tr>
<tr>
<td>H</td>
<td>0.22527</td>
<td>-1.4851</td>
<td>2.08588</td>
</tr>
<tr>
<td>H</td>
<td>-1.37362</td>
<td>-1.05119</td>
<td>1.84936</td>
</tr>
<tr>
<td>F</td>
<td>4.74655</td>
<td>1.63167</td>
<td>-0.02573</td>
</tr>
<tr>
<td>F</td>
<td>5.29814</td>
<td>0.12629</td>
<td>1.45138</td>
</tr>
<tr>
<td>F</td>
<td>5.85612</td>
<td>-0.14266</td>
<td>-0.6382</td>
</tr>
<tr>
<td>F</td>
<td>-4.74341</td>
<td>-1.63373</td>
<td>0.01825</td>
</tr>
<tr>
<td>F</td>
<td>-5.29676</td>
<td>-0.12269</td>
<td>-1.45232</td>
</tr>
<tr>
<td>F</td>
<td>-5.85632</td>
<td>0.13589</td>
<td>0.63814</td>
</tr>
<tr>
<td>O</td>
<td>2.3321</td>
<td>0.06072</td>
<td>0.83046</td>
</tr>
<tr>
<td>O</td>
<td>3.55364</td>
<td>-2.00834</td>
<td>0.13748</td>
</tr>
<tr>
<td>O</td>
<td>2.95992</td>
<td>-0.25663</td>
<td>-1.55368</td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>O</td>
<td>-2.33142</td>
<td>-0.05516</td>
<td>-0.8297</td>
</tr>
<tr>
<td>O</td>
<td>-3.55655</td>
<td>2.00897</td>
<td>-0.12861</td>
</tr>
<tr>
<td>O</td>
<td>-2.96077</td>
<td>0.25128</td>
<td>1.55556</td>
</tr>
<tr>
<td>N</td>
<td>-0.21171</td>
<td>1.63365</td>
<td>1.24504</td>
</tr>
<tr>
<td>N</td>
<td>0.52441</td>
<td>1.40115</td>
<td>-1.39957</td>
</tr>
<tr>
<td>N</td>
<td>0.21171</td>
<td>-1.6325</td>
<td>-1.24633</td>
</tr>
<tr>
<td>N</td>
<td>-0.52253</td>
<td>-1.40035</td>
<td>1.39882</td>
</tr>
<tr>
<td>C</td>
<td>-0.22766</td>
<td>2.86715</td>
<td>0.41522</td>
</tr>
<tr>
<td>H</td>
<td>0.00907</td>
<td>3.75772</td>
<td>1.00867</td>
</tr>
<tr>
<td>H</td>
<td>-1.24196</td>
<td>2.97949</td>
<td>0.02198</td>
</tr>
<tr>
<td>C</td>
<td>0.78181</td>
<td>2.69545</td>
<td>-0.71721</td>
</tr>
<tr>
<td>H</td>
<td>0.7257</td>
<td>3.5393</td>
<td>-1.4137</td>
</tr>
<tr>
<td>H</td>
<td>1.79866</td>
<td>2.65086</td>
<td>-0.31826</td>
</tr>
<tr>
<td>C</td>
<td>0.22714</td>
<td>-2.86623</td>
<td>-0.41685</td>
</tr>
<tr>
<td>H</td>
<td>1.24154</td>
<td>-2.97953</td>
<td>-0.02406</td>
</tr>
<tr>
<td>H</td>
<td>-0.0105</td>
<td>-3.75646</td>
<td>-1.01043</td>
</tr>
<tr>
<td>C</td>
<td>-0.78133</td>
<td>-2.69435</td>
<td>0.71648</td>
</tr>
<tr>
<td>H</td>
<td>-1.79866</td>
<td>-2.64905</td>
<td>0.31889</td>
</tr>
<tr>
<td>H</td>
<td>-0.72486</td>
<td>-3.53842</td>
<td>1.4127</td>
</tr>
<tr>
<td>C</td>
<td>4.89898</td>
<td>0.30764</td>
<td>0.18329</td>
</tr>
<tr>
<td>C</td>
<td>-4.89796</td>
<td>-0.30902</td>
<td>-0.18489</td>
</tr>
</tbody>
</table>

TD-DFT calculated excited state:

Multiplicity and symmetry: 2.001-A

Energy: 2.3134 eV, 535.95 nm

Oscillator strength: f=0.0000

S^2: 0.751

Principal Orbital contributions:

- 107B -> 122B: 38.7%
- 110B -> 122B: 50.7%
- 112B -> 122B: 1.5%
- 119B -> 122B: 3.1%
- 121B -> 122B: 3.6%
Fig S1a: Molecular orbital 107B of [Cu(en)$_2$](OTf)$_2$

Fig S1b: Molecular orbital 110B of [Cu(en)$_2$](OTf)$_2$
Fig S1c; Molecular orbital 122B of [Cu(en)₂](OTf)₂
3. Additional X-band CW and pulsed EPR and ENDOR data.

Fig S2: CW EPR spectrum (298 K) of [Cu(en)$_2$](OTf)$_2$ dissolved in acetonitrile:tetrahydrofuran (1:1). a) experimental and a’ simulation.

Fig S3: Field Sweep Echo Detected EPR spectrum (10 K) of [Cu(en)$_2$](OTf)$_2$ a) experimental and a’) simulation.
Fig S4 Pulsed Davies ENDOR spectra of [Cu(en)$_2$(OTf)$_2$] recorded at a) 350 mT and b) 288 mT. Corresponding simulations are shown in a’,b’. The spectra were taken at 10 K, with a repetition rate of 333 kHz. The pulse sequence π-T-π/2-τ-π-τ-echo using mw pulse lengths of $t_\pi = 256$ ns, $t_{\pi/2} = 128$ ns, and an interpulse time τ of 820 ns was used. An rf π pulse of variable frequency and a length of 8 μs was applied during time T of 10 μs.
Fig S5: Schematic illustration of the Cu(II) complexes referenced in Table 3 (main text).