Electronic Supporting Information

for

Dual coordination in ditopic azabipyridines and azaterpyridines as a key for reversible switching

Soumen De, Susnata Pramanik and Michael Schmittel,*

Center of Micro and Nanochemistry and Engineering, Organische Chemie I Universität Siegen Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany Fax: (+) 49-271-740-3270
E-mail: schmittel@chemie.uni-siegen.de

Contents

1H, 13C, and COSY Spectra of Complexes: ... 2
DOSY Spectra of Complexes: ... 26
ESI-MS of Complexes: ... 28
1H, 13C, and COSY Spectra of Complexes:

Figure S1: 1H NMR spectrum (400 MHz) of complex 8 in CD$_2$Cl$_2$ at 298 K.

Figure S2: Partial 1H-1H COSY spectrum (400 MHz) of complex 8 in CD$_2$Cl$_2$ at 298 K.
Figure S3: 1H NMR spectra (400 MHz) of [Cu(MeCN)$_4$]PF$_6$ and 5 (1:1) in CD$_2$Cl$_2$ at 298 K with (top) 0.5 equiv. of 1 being added, and (bottom) with a total of 1.0 equiv. of 1 being added affording complex 8.

Figure S4: 13C NMR spectrum (100 MHz) of complex 8 in CD$_2$Cl$_2$ at 298 K.
Figure S5: 1H NMR spectrum (400 MHz) of complex 9 in CD$_2$Cl$_2$ at 298 K.

Figure S6: 1H-1H COSY spectrum (400 MHz) of complex 9 in CD$_2$Cl$_2$ at 298 K.
Figure S7: 1H NMR spectra (400 MHz) of [Cu(MeCN)$_4$]PF$_6$ and 6 (1:1) in CD$_2$Cl$_2$ at 298 K with (top) 0.5 equiv. of 1 being added, and (bottom) with a total of 1.0 equiv. of 1 being added affording complex 9.

Figure S8: 13C NMR spectrum (100 MHz) of complex 9 in CD$_2$Cl$_2$ at 298 K.
Figure S9: 1H NMR spectrum (400 MHz) of complex 10 in CD$_2$Cl$_2$ at 298 K.

Figure S10: Partial 1H-1H COSY spectrum (400 MHz) of complex 10 in CD$_2$Cl$_2$ at 298 K.
Figure S 11: 1H NMR spectra (400 MHz) of [Cu(MeCN)$_4$]PF$_6$ and 5 (1:1) in CD$_2$Cl$_2$ at 298 K with (top) 0.5 equiv. of 2 being added, and (bottom) with a total of 1.0 equiv. of 2 being added affording complex 10.

Figure S12: 13C NMR spectrum (100 MHz) of complex 10 in CD$_2$Cl$_2$ at 298 K.
Figure S13: 1H NMR spectrum of (400 MHz) complex 11 in CD$_2$Cl$_2$ at 298 K.

Figure S14: 1H-1H COSY spectrum (400 MHz) of complex 11 in CD$_2$Cl$_2$ at 298 K.
Figure S15: 1H NMR spectra (400 MHz) of [Cu(MeCN)$_4$]PF$_6$ and 6 (1:1) in CD$_2$Cl$_2$ at 298 K with (top) 0.5 equiv. of 2 being added, and (bottom) with a total of 1.0 equiv. of 2 being added affording complex 11.

Figure S16: 13C NMR spectrum (100 MHz) of complex 11 in CD$_2$Cl$_2$ at 298 K.
Figure S17: 1H NMR spectrum (400 MHz) of complex 12 in CD$_2$Cl$_2$ at 298 K.

Figure S18: Partial 1H-1H COSY spectrum (400 MHz) of complex 12 in CD$_2$Cl$_2$ at 298 K.
Figure S19: 1H NMR spectra (400 MHz) of 3 and 5 (1:1) in CD$_2$Cl$_2$ at 298 K with (top) 0.5 equiv. of [Cu(MeCN)$_4$]PF$_6$ being added, and (bottom) with a total of 1.0 equiv. of [Cu(MeCN)$_4$]PF$_6$ being added affording complex 12.

Figure S20: 13C NMR spectrum (100 MHz) of complex 12 in CD$_2$Cl$_2$ at 298 K.
Figure S21: 1H NMR spectrum (400 MHz) of complex 13 in CD$_2$Cl$_2$ at 298 K.

Figure S22: 1H-1H COSY spectrum (400 MHz) of complex 13 in CD$_2$Cl$_2$ at 298 K.
Figure S23: 13C NMR spectrum (100 MHz) of complex 13 in CD$_2$Cl$_2$ at 298 K.

Figure S24: 1H NMR spectra (400 MHz) of 3 and 6 (1:1) in CD$_2$Cl$_2$ at 298 K with (top) 0.5 equiv. of [Cu(MeCN)$_4$]PF$_6$ being added, and (bottom) with a total of 1.0 equiv. of [Cu(MeCN)$_6$]PF$_6$ being added affording complex 13.
Figure S25: 1H NMR spectrum (400 MHz) of complex 14 in CD$_2$Cl$_2$ at 298 K.

Figure S26: 13C NMR spectrum (100 MHz) of complex 14 in CD$_2$Cl$_2$ at 298 K.

Figure S27: 1H NMR spectra (400 MHz) of 4 and 5 (1:1) in CD$_2$Cl$_2$ at 298 K with (top) 0.5 equiv. of [Cu(MeCN)$_4$]PF$_6$ being added, and (bottom) with a total of 1.0 equiv. of [Cu(MeCN)$_4$]PF$_6$ being added affording complex 14.
Figure S28: 1H NMR spectrum (400 MHz) of complex 15 in CD$_2$Cl$_2$ at 298 K.

Figure S29: 1H NMR spectra (400 MHz) of 4 and 6 (1:1) in CD$_2$Cl$_2$ at 298 K with (top) 0.5 equiv. of [Cu(MeCN)$_4$]PF$_6$ being added, and (bottom) with a total of 1.0 equiv. of [Cu(MeCN)$_4$]PF$_6$ being added affording complex 15.
Figure S30: 13C NMR spectrum (100 MHz) of complex 15 in CD$_2$Cl$_2$ at 298 K.

Figure S31: 1H NMR spectrum (400 MHz) of complex 16 in CD$_2$Cl$_2$ at 298 K.
Figure S32: Partial 1H-1H COSY spectrum (400 MHz) of complex 16 in CD$_2$Cl$_2$ at 298 K.

Figure S33: 13C NMR spectrum (100 MHz) of complex 16 in CD$_2$Cl$_2$ at 298 K.
Figure S34: 1H NMR spectrum (400 MHz) of complex 17 in CD$_2$Cl$_2$ at 298 K.

Figure S35: 1H-1H COSY spectrum of (400 MHz) complex 17 in CD$_2$Cl$_2$ at 298 K.
Figure S36: 13C NMR spectrum (100 MHz) of complex 17 in CD$_2$Cl$_2$ at 298 K.
Figure S37: 1H NMR spectrum (400 MHz) of complex 18 in CD$_2$Cl$_2$ at 298 K.

Figure S38: 13C NMR spectrum (100 MHz) of complex 18 in CD$_2$Cl$_2$ at 298 K.
Figure S39: 1H NMR spectra (400 MHz) in CD$_2$Cl$_2$ at 298 K of (top) complex 8, and (bottom) complex 8 in presence of ZnTPP (7). Congruent blue coloured peaks for 1 in both spectra (see a-H and b-H) indicate that 1 is not axially coordinated to the added ZnTPP.

Figure S40: 1H NMR spectra (400 MHz) in CD$_2$Cl$_2$ at 298 K of (top) complex 9, and (bottom) complex 9 in presence of ZnTPP (7). Congruent blue coloured peaks for 1 in both spectra (see a-H and b-H) indicate that 1 is not axially coordinated to the added ZnTPP.
Figure S41: 1H NMR spectra (400 MHz) in CD$_2$Cl$_2$ at 298 K of (top) complex 12, and (bottom) complex 12 in presence of ZnTPP. The different shifts (blue colour) for 3 in both spectra (see a-H and b-H) indicate that 3 is axially coordinated to the added ZnTPP.

Figure S42: 1H NMR spectra (400 MHz) in CD$_2$Cl$_2$ at 298 K of (top) complex 13, and (bottom) complex 13 in presence of ZnTPP. The different shifts (blue colour) for 3 in both spectra (see a-H and b-H) indicate that 3 is axially coordinated to the added ZnTPP.
Figure S43: 1H NMR spectrum (400 MHz) of complex 20 in CD$_2$Cl$_2$ at 298 K.
Figure S44: Concentration dependence of the 1H NMR (400 MHz) shifts of protons a-H and b-H at the bipy unit in complex 20. The downfield shift with decreasing concentration points to intermolecular coordination.

Figure S45: 13C NMR spectrum (150 MHz) of unlocked complex 20 in CD$_2$Cl$_2$ at 298 K.
Figure S46: Partial 1H NMR spectrum (400 MHz) showing reversible switching between the open and closed form. (A) Only nanoswitch 19. (B) 19 after addition of one equivalent of [Cu(5)]$^{+}$. (C) After addition of one equivalent of cyclam to solution B. Only the characteristics protons a-H, b-H, and mes-H are shown.
DOSY Spectra of Complexes:

![DOSY Spectrum](image)

Figure S47: DOSY spectrum (400 MHz) of complex 10 at 298 K.
Figure S48: DOSY spectrum (400 MHz) of complex 16 at 298 K.
ESI-MS of Complexes:

Figure S49: ESI-MS of complex 8.
Figure S50: ESI-MS of complex 9.
Figure S51: ESI-MS of complex 10.
Figure S52: ESI-MS of complex 11.
Figure S53: ESI-MS of complex 12.
Figure S54: ESI-MS of complex 13.
Figure S55: ESI-MS of complex 14.
Figure S56: ESI-MS of complex 15.