Electronic supplementary information (ESI)

Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for all solid-state battery electrolyte

Sangryun Kim, Masaaki Hirayama*, Sou Taminato, and Ryoji Kanno

Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 225-8502, Japan

Corresponding author

*Phone: +81-459245403. Fax: +81-459245403. E-mail: hirayama@echem.titech.ac.jp
Samples for AC impedance measurements:

Schematic drawings of the samples used for the impedance measurements are shown in Fig. S1. 4×10 mm² sized LLZO thin films were deposited on (100)- and (111)-oriented GGG substrates (10×10 mm²). Prior to the impedance measurement, comb-type Au electrodes were mounted on the thin films by DC sputtering (Quick Coater SC-701, Sanyu Electron Co., Ltd.). The width and length of the Au electrodes were 1 mm and 4 mm, respectively. A needle probe was used to measure AC impedance in the in-plane direction. Lithium ionic conductivities were investigated along the in-plane [110] and [11-2] directions for the LLZO(001) and LLZO(111) thin films. The measurements were carried out in an Ar-filled glove box (DBO-1, Miwa) to prevent interfacial reactions of the thin film electrolyte with the moisture and carbon dioxide in air.

![Fig. S1 Schematic drawings of samples used for the impedance measurements.](image)

PLD synthesis conditions for epitaxial growth of LLZO:

Fig. S2 shows out-of-plane XRD patterns for the LLZO thin films grown on the GGG(001) substrate under various conditions. No diffraction peaks of LLZO were observed for the film grown at 600 °C. The film grown at 700 °C had 004 and 008 diffraction peaks of LLZO with a cubic lattice. The 004 peak was observed for the film grown at 800 °C; however, not only was the intensity of the 004 peak significantly decreased compared to that of the film grown at 700 °C, but also, the 008 peak was not observed. No diffraction peaks of LLZO were observed for energy fluences of 1.5 and 2.0 J cm⁻², and a laser frequency of 5 Hz. Epitaxial growth was confirmed at 2.5 J
Similarly to the substrate temperature, the crystallinity of the epitaxial LLZO films declined at the higher energy fluence and higher laser frequency.

Fig. S2 Out-of-plane XRD patterns of LLZO thin films on GGG(001) substrate synthesized at various (a) substrate temperatures, (b) energy fluences, and (c) laser frequencies.