# Electronic Supplementary Material (ESI) for Dalton Transactions # This journal is © The Royal Society of Chemistry 2013 ####################################################################### # # Cambridge Crystallographic Data Centre # CCDC # ####################################################################### # # This CIF contains data from an original supplementary publication # deposited with the CCDC, and may include chemical, crystal, # experimental, refinement, atomic coordinates, # anisotropic displacement parameters and molecular geometry data, # as required by the journal to which it was submitted. # # This CIF is provided on the understanding that it is used for bona # fide research purposes only. It may contain copyright material # of the CCDC or of third parties, and may not be copied or further # disseminated in any form, whether machine-readable or not, # except for the purpose of generating routine backup copies # on your local computer system. # # For further information on the CCDC, data deposition and # data retrieval see: # www.ccdc.cam.ac.uk # # Bona fide researchers may freely download Mercury and enCIFer # from this site to visualise CIF-encoded structures and # to carry out CIF format checking respectively. # data_IMP16-Cu _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C68 H61 Cl Cu4 N36 O4 Si2, 18(C3 H7 N O)' _chemical_formula_sum 'C122 H187 Cl Cu4 N54 O22 Si2' _chemical_formula_weight 3108.05 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0311 0.0180 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0492 0.0322 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.3639 0.7018 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu -1.9646 0.5888 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Si Si 0.2541 0.3302 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Tetragonal _symmetry_space_group_name_H-M P4(2)/mnm loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' '-y+1/2, x+1/2, z+1/2' 'y+1/2, -x+1/2, z+1/2' '-x+1/2, y+1/2, -z+1/2' 'x+1/2, -y+1/2, -z+1/2' 'y, x, -z' '-y, -x, -z' '-x, -y, -z' 'x, y, -z' 'y-1/2, -x-1/2, -z-1/2' '-y-1/2, x-1/2, -z-1/2' 'x-1/2, -y-1/2, z-1/2' '-x-1/2, y-1/2, z-1/2' '-y, -x, z' 'y, x, z' _cell_length_a 18.5153(3) _cell_length_b 18.5153(3) _cell_length_c 25.0576(7) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 8590.2(4) _cell_formula_units_Z 2 _cell_measurement_temperature 173 _cell_measurement_reflns_used 7446 _cell_measurement_theta_min 2.3843 _cell_measurement_theta_max 72.3974 _exptl_crystal_description prisms _exptl_crystal_colour 'Pale purple' _exptl_crystal_size_max 0.13 _exptl_crystal_size_mid 0.11 _exptl_crystal_size_min 0.08 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.202 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 3268 _exptl_absorpt_coefficient_mu 1.424 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.43165 _exptl_absorpt_correction_T_max 1.00000 _exptl_absorpt_process_details ; CrysAlisPro, Agilent Technologies, Version 1.171.35.11 (release 16-05-2011 CrysAlis171 .NET) (compiled May 16 2011,17:55:39) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 173 _diffrn_radiation_wavelength 1.54184 _diffrn_radiation_type CuK\a _diffrn_radiation_source 'Enhance Ultra (Cu) X-ray Source' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'OD Xcalibur PX Ultra' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean 8.2556 _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 21464 _diffrn_reflns_av_R_equivalents 0.0621 _diffrn_reflns_av_sigmaI/netI 0.0425 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 22 _diffrn_reflns_limit_k_min -22 _diffrn_reflns_limit_k_max 17 _diffrn_reflns_limit_l_min -22 _diffrn_reflns_limit_l_max 30 _diffrn_reflns_theta_min 2.97 _diffrn_reflns_theta_max 72.55 _reflns_number_total 4463 _reflns_number_gt 3351 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlis CCD, Oxford Diffraction Ltd' _computing_cell_refinement 'CrysAlis RED, Oxford Diffraction Ltd' _computing_data_reduction 'CrysAlis RED, Oxford Diffraction Ltd' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Bruker SHELXTL' _computing_publication_material 'Bruker SHELXTL' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0978P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 4463 _refine_ls_number_parameters 127 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0579 _refine_ls_R_factor_gt 0.0482 _refine_ls_wR_factor_ref 0.1396 _refine_ls_wR_factor_gt 0.1331 _refine_ls_goodness_of_fit_ref 0.947 _refine_ls_restrained_S_all 0.947 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.596657(19) 0.403343(19) 0.5000 0.04279(16) Uani 1 4 d S . . Cu2 Cu 0.5000 0.5000 0.60161(2) 0.04399(17) Uani 1 4 d S . . Cl1 Cl 0.5000 0.5000 0.5000 0.0503(3) Uani 1 8 d S . . Si1 Si 0.5000 0.0000 0.7500 0.0416(2) Uani 1 4 d S . . N1 N 0.54008(9) 0.35418(9) 0.55896(6) 0.0475(4) Uani 1 1 d . . . N2 N 0.50400(8) 0.38932(9) 0.59720(6) 0.0483(4) Uani 1 1 d . . . N3 N 0.48204(9) 0.34305(10) 0.63408(7) 0.0529(4) Uani 1 1 d . . . C4 C 0.50646(11) 0.27883(11) 0.61688(8) 0.0509(4) Uani 1 1 d . . . N5 N 0.54226(9) 0.28425(9) 0.57060(6) 0.0513(4) Uani 1 1 d . . . C6 C 0.50005(11) 0.21064(11) 0.64668(8) 0.0516(4) Uani 1 1 d . . . C7 C 0.46093(16) 0.20716(13) 0.69337(10) 0.0748(7) Uani 1 1 d . . . H7A H 0.4348 0.2482 0.7054 0.090 Uiso 1 1 calc R . . C8 C 0.45961(15) 0.14374(14) 0.72290(10) 0.0735(7) Uani 1 1 d . . . H8A H 0.4324 0.1423 0.7550 0.088 Uiso 1 1 calc R . . C9 C 0.49678(10) 0.08257(10) 0.70696(7) 0.0455(4) Uani 1 1 d . . . C10 C 0.53441(16) 0.08696(12) 0.65940(9) 0.0694(6) Uani 1 1 d . . . H10A H 0.5597 0.0457 0.6467 0.083 Uiso 1 1 calc R . . C11 C 0.53606(16) 0.15046(13) 0.62962(9) 0.0718(7) Uani 1 1 d . . . H11A H 0.5625 0.1520 0.5971 0.086 Uiso 1 1 calc R . . O20 O 0.68297(12) 0.31703(12) 0.5000 0.0740(9) Uani 1 4 d S . . O30 O 0.5000 0.5000 0.69037(14) 0.0776(10) Uani 1 4 d S . . C30 C 0.4661(7) 0.4661(7) 0.7162(6) 0.199(9) Uani 0.50 2 d SP . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.0429(2) 0.0429(2) 0.0426(3) 0.000 0.000 0.0029(2) Cu2 0.0420(2) 0.0420(2) 0.0479(3) 0.000 0.000 0.0051(2) Cl1 0.0506(4) 0.0506(4) 0.0497(6) 0.000 0.000 0.0139(5) Si1 0.0412(3) 0.0412(3) 0.0425(4) 0.000 0.000 0.000 N1 0.0505(9) 0.0451(8) 0.0468(7) 0.0023(6) 0.0009(6) 0.0017(7) N2 0.0495(9) 0.0456(9) 0.0497(8) 0.0038(6) 0.0014(6) 0.0071(6) N3 0.0536(9) 0.0523(9) 0.0529(8) 0.0083(7) 0.0069(7) 0.0065(7) C4 0.0525(11) 0.0476(10) 0.0524(9) 0.0056(8) 0.0021(8) 0.0024(8) N5 0.0575(10) 0.0464(9) 0.0500(8) 0.0049(6) 0.0031(7) 0.0024(7) C6 0.0530(11) 0.0486(11) 0.0532(10) 0.0083(8) 0.0011(8) 0.0029(8) C7 0.0908(18) 0.0541(12) 0.0794(14) 0.0147(11) 0.0300(13) 0.0227(12) C8 0.0885(17) 0.0662(14) 0.0660(13) 0.0127(11) 0.0300(12) 0.0162(13) C9 0.0456(10) 0.0435(9) 0.0473(8) 0.0014(7) 0.0002(7) 0.0008(7) C10 0.0954(18) 0.0537(12) 0.0591(11) 0.0052(9) 0.0204(12) 0.0164(12) C11 0.1004(18) 0.0593(13) 0.0557(11) 0.0073(10) 0.0283(12) 0.0093(13) O20 0.0659(12) 0.0659(12) 0.090(2) 0.000 0.000 0.0143(16) O30 0.0884(16) 0.0884(16) 0.0561(18) 0.000 0.000 -0.001(2) C30 0.251(15) 0.251(15) 0.096(9) 0.005(6) 0.005(6) -0.10(2) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 N1 2.0269(16) 10_556 ? Cu1 N1 2.0269(16) 15_665 ? Cu1 N1 2.0269(16) . ? Cu1 N1 2.0269(16) 8_666 ? Cu1 O20 2.260(3) . ? Cu1 Cl1 2.5309(5) . ? Cu2 N2 2.0536(17) 15_665 ? Cu2 N2 2.0536(17) . ? Cu2 N2 2.0536(17) 16 ? Cu2 N2 2.0536(17) 2_665 ? Cu2 O30 2.224(4) . ? Cu2 Cl1 2.5462(5) . ? Cl1 Cu1 2.5309(5) 9_666 ? Cl1 Cu2 2.5462(5) 9_666 ? Si1 C9 1.8719(19) 11_667 ? Si1 C9 1.8719(19) 2_655 ? Si1 C9 1.8719(19) 12_657 ? Si1 C9 1.8719(19) . ? N1 N5 1.328(2) . ? N1 N2 1.337(2) . ? N2 N3 1.324(2) . ? N3 C4 1.343(3) . ? C4 N5 1.339(3) . ? C4 C6 1.472(3) . ? C6 C11 1.367(3) . ? C6 C7 1.377(3) . ? C7 C8 1.388(3) . ? C8 C9 1.384(3) . ? C9 C10 1.383(3) . ? C10 C11 1.393(3) . ? O30 C30 1.099(17) 2_665 ? O30 C30 1.099(17) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 Cu1 N1 174.51(10) 10_556 15_665 ? N1 Cu1 N1 93.58(9) 10_556 . ? N1 Cu1 N1 86.16(9) 15_665 . ? N1 Cu1 N1 86.16(9) 10_556 8_666 ? N1 Cu1 N1 93.58(9) 15_665 8_666 ? N1 Cu1 N1 174.51(10) . 8_666 ? N1 Cu1 O20 92.75(5) 10_556 . ? N1 Cu1 O20 92.75(5) 15_665 . ? N1 Cu1 O20 92.75(5) . . ? N1 Cu1 O20 92.75(5) 8_666 . ? N1 Cu1 Cl1 87.25(5) 10_556 . ? N1 Cu1 Cl1 87.25(5) 15_665 . ? N1 Cu1 Cl1 87.25(5) . . ? N1 Cu1 Cl1 87.25(5) 8_666 . ? O20 Cu1 Cl1 180.00(2) . . ? N2 Cu2 N2 85.70(9) 15_665 . ? N2 Cu2 N2 173.83(9) 15_665 16 ? N2 Cu2 N2 93.97(9) . 16 ? N2 Cu2 N2 93.97(9) 15_665 2_665 ? N2 Cu2 N2 173.83(9) . 2_665 ? N2 Cu2 N2 85.70(9) 16 2_665 ? N2 Cu2 O30 93.08(4) 15_665 . ? N2 Cu2 O30 93.08(4) . . ? N2 Cu2 O30 93.08(4) 16 . ? N2 Cu2 O30 93.08(4) 2_665 . ? N2 Cu2 Cl1 86.92(4) 15_665 . ? N2 Cu2 Cl1 86.92(4) . . ? N2 Cu2 Cl1 86.92(4) 16 . ? N2 Cu2 Cl1 86.92(4) 2_665 . ? O30 Cu2 Cl1 180.0 . . ? Cu1 Cl1 Cu1 180.0 . 9_666 ? Cu1 Cl1 Cu2 90.0 . 9_666 ? Cu1 Cl1 Cu2 90.0 9_666 9_666 ? Cu1 Cl1 Cu2 90.0 . . ? Cu1 Cl1 Cu2 90.0 9_666 . ? Cu2 Cl1 Cu2 180.0 9_666 . ? C9 Si1 C9 109.38(6) 11_667 2_655 ? C9 Si1 C9 109.65(11) 11_667 12_657 ? C9 Si1 C9 109.38(6) 2_655 12_657 ? C9 Si1 C9 109.38(6) 11_667 . ? C9 Si1 C9 109.65(11) 2_655 . ? C9 Si1 C9 109.38(6) 12_657 . ? N5 N1 N2 109.40(14) . . ? N5 N1 Cu1 125.61(13) . . ? N2 N1 Cu1 124.20(12) . . ? N3 N2 N1 109.80(15) . . ? N3 N2 Cu2 126.66(13) . . ? N1 N2 Cu2 122.83(12) . . ? N2 N3 C4 104.21(15) . . ? N5 C4 N3 112.21(17) . . ? N5 C4 C6 122.93(18) . . ? N3 C4 C6 124.71(17) . . ? N1 N5 C4 104.37(16) . . ? C11 C6 C7 118.94(19) . . ? C11 C6 C4 120.07(18) . . ? C7 C6 C4 120.90(19) . . ? C6 C7 C8 120.1(2) . . ? C9 C8 C7 122.0(2) . . ? C10 C9 C8 116.81(19) . . ? C10 C9 Si1 121.90(15) . . ? C8 C9 Si1 121.19(15) . . ? C9 C10 C11 121.5(2) . . ? C6 C11 C10 120.7(2) . . ? C30 O30 C30 107.8(18) 2_665 . ? C30 O30 Cu2 126.1(9) 2_665 . ? C30 O30 Cu2 126.1(9) . . ? _diffrn_measured_fraction_theta_max 0.977 _diffrn_reflns_theta_full 72.00 _diffrn_measured_fraction_theta_full 0.983 _refine_diff_density_max 0.783 _refine_diff_density_min -0.443 _refine_diff_density_rms 0.053 # SQUEEZE RESULTS (APPEND TO CIF) # Note: Data are Listed for all Voids in the P1 Unit Cell # i.e. Centre of Gravity, Solvent Accessible Volume, # Recovered number of Electrons in the Void and # Details about the Squeezed Material loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons _platon_squeeze_void_content 1 -0.010 -0.002 0.322 6294 1679 ' ' _platon_squeeze_details ; Due to the severe disorder across symmetry, only the oxygen atoms of the coordinated solvent molecules could be reliably located. From the looks of the electron density maps, combined with the solvent list given by the chemist, the most likely solvent is dmf (C3H7NO). So, at the time of running SQUEEZE, the asu contents were low by 0.5(C3H7N). However, SQUEEZE does not remove electron denisty that is within bonding distance of defined atoms, so the contribution of the carbonyl carbon would not be removed, meaning that 0.5(C2H7N) = 13 e/asu of that removed by SQUEEZE would be due to the coordinated solvent. SQUEEZE suggested 1679 e/cell = 104.9 e/asu. As detailed above, the disorder of the coordinated solvent accounts for 13 e/asu of this, leaving 91.9 e/asu for the included solvent. The included solvent is presumed to be dmf (C3H7NO) = 40e. 2.25dmf = 90e so this was used as the solvent present. 2.25dmf per asu = 18dmf per Cu4 unit. Subsequent to SQUEEZE, the carbonyl carbon of only one of the coordinated solvent molecules was located. So, atom list low by 0.25(C3H7N) + 0.25(C2H7N) + 2.25(C3H7NO) = (C0.75 H1.75 N0.25) + (C0.5 H1.75 N0.25) + (C6.75 H15.75 N2.25 O2.25) = C8 H19.25 N2.75 O2.25, and UNIT low by C128 H308 N44 O36, i.e. C116 H64 N64 O8 Cl2 Cu8 Si4 ; #===END _database_code_depnum_ccdc_archive 'CCDC 940619'