<Supporting Information>

Coordination-Driven Nanosized Lanthanide “Molecular Lantern” as Luminescent Chemosensors for the Selective Sensing of Magnesium Ions

Liang Zhao, Yang Liu, Cheng He,* Jian Wang and Chunying Duan*

Contents

1 Figure S1. Uv-vis absorption spectra of respective ligands and complexes.
2 Figure S2. Selectivity and competition experiments of Ce-DBDS.
3 Figure S3. Selectivity and competition experiments of Ce-DBBS.
4 Figure S4. Selectivity and competition experiments of Ce-DBOS.
5 Figure S5. Linear fit for log[(F-F_{min})/(F_{max}-F)] vs. log[G] for corresponding titration curve of Ce-DBDS.
6 Figure S6. Linear fit for log[(F-F_{min})/(F_{max}-F)] vs. log[G] for corresponding titration curve of Ce-DBBS.
7 Figure S7. Linear fit for log[(F-F_{min})/(F_{max}-F)] vs. log[G] for corresponding titration curve of Ce-DBOS.
8 Figure S8. Selectivity experiments of DBDS.
9 Figure S9. Selectivity experiments of DBBS.
10 Figure S10. Selectivity experiments of DBOS.
1. **Figure S1** Uv-vis absorption spectra of Ce-DBDS (top), Ce-DBBS (middle) and Ce-DBOS (bottom) in DMF/CH$_3$CN solution (1×10$^{-5}$ M) upon the addition of Mg$^{2+}$ ions (10 eq) and Al$^{3+}$ ions (40 eq).
2. **Figure S2** Selectivity and competition experiments of Ce-DBDS in DMF/CH$_3$CN (1:9 v/v) solution (1×10$^{-5}$ M) with 10 equiv of Al$^{3+}$, Mg$^{2+}$, Li$^+$, Ca$^{2+}$, Na$^+$, Ba$^{2+}$ and K$^+$ cations. (Excitation at 365 nm and emission at 480 nm)
3. **Figure S3** Selectivity and competition experiments of Ce-DBBS in DMF/CH$_3$CN (1:9 v/v) solution (1×10^{-5} M) with 10 equiv of Al$^{3+}$, Mg$^{2+}$, Li$^+$, Ca$^{2+}$, Na$^+$, Ba$^{2+}$ and K$^+$ cations. (Excitation at 365 nm and emission at 480 nm)
4. **Figure S4** Selectivity and competition experiments of Ce-DBOS in DMF/CH$_3$CN (1:9 v/v) solution (1×10$^{-5}$ M) with 40 equiv of Al$^{3+}$, Mg$^{2+}$, Li$^+$, Ca$^{2+}$, Na$^+$, Ba$^{2+}$ and K$^+$ cations. (Excitation at 380 nm and emission at 442 nm)
5. **Figure S5** Association constant calculation for the 1:1 complexation to linearly fit the fluorescence titration (at 480 nm) of Ce-DBDS upon addition of Mg$^{2+}$ in DMF/CH$_3$CN (1:9 v/v) solution (1×10^{-5} M)S1
6. **Figure S6** Association constant calculation for the 1:1 complexation to linearly fit the fluorescence titration (at 480 nm) of Ce-DBBS upon addition of Mg$^{2+}$ in DMF/CH$_3$CN (1:9 v/v) solution (1×10$^{-5}$ M)S1
7. **Figure S7** Association constant calculation for the 1:1 complexation to linearly fit the fluorescence titration (at 442 nm) of Ce-DBOS upon addition of Al3+ in DMF/CH\textsubscript{3}CN (1:9 v/v) solution (1×10-5 M)S1
8. **Figure S8** Selectivity of DBDS in DMF/CH$_3$CN (1:9 v/v) solution (3×10^{-5}M) with 10 equiv of Al$^{3+}$, Mg$^{2+}$, Li$^+$, Ca$^{2+}$, Na$^+$, Ba$^{2+}$ and K$^+$ cations. (Excitation at 365 nm and emission at 480nm)
9. **Figure S9** Selectivity of **DBBS** in DMF/CH$_3$CN (1:9 v/v) solution (3×10$^{-5}$M) with 10 equiv of Al$^{3+}$, Mg$^{2+}$, Li$^+$, Ca$^{2+}$, Na$^+$, Ba$^{2+}$ and K$^+$ cations. (Excitation at 365 nm and emission at 480nm)
Figure S10 Selectivity of DBOS in DMF/CH$_3$CN (1:9 v/v) solution (3×10$^{-5}$M) with 40 equiv of Al$^{3+}$, Mg$^{2+}$, Li$^+$, Ca$^{2+}$, Na$^+$, Ba$^{2+}$ and K$^+$ cations. (Excitation at 380 nm and emission at 442nm)