Electronic Supplementary Information for:

Room-temperature emissive liquid crystalline materials based on palladium(II) imine derivatives containing the 2-phenylpyridine core

Marin Micutz^a, Monica Iliş^a, Teodora Staicu^a, Florea Dumitrașcu^b, Iuliana Pasuk^c, Yann Molard^d, Thierry Roisnel^d, Viorel Cîrcu^{a*}

^aDept. of Inorganic Chemistry, University of Bucharest, 23 Dumbrava Rosie st, sector 2, Bucharest 020464, Romania, e-mail: <u>viorel_carcu@yahoo.com</u>, <u>viorel.circu@g.unibuc.ro</u> ^bCentre for Organic Chemistry "C. D. Nenitzescu", Romanian Academy, Spl. Independentei 202B, Bucharest 060023, Romania

^cNational Institute of Materials Physics, P.O. Box MG-7, Magurele, 077125, Romania

^dSciences Chimiques de Rennes UMR 6226 CNRS Université de Rennes 1, Avenue du Général Leclerc 35042 Rennes Cedex, France

Content:

1. Scheme 1. Preparation of <i>N</i> -benzoyl- <i>N</i> '-aryl thiourea derivatives (BTU)	p.2
2. Table 1. Crystallographic data for complexes.	p.3
3. Table 2. Bond lengths (Å) and angles (°) for complexes 3 , 4b and 9	p.4
4. Table 3. X-ray diffraction data for Pd(II) complexes (11 and 12)	p.5
5. Figure S1. Pictures of 10 taken at room temperature, without irradiation (a)	
and of the same area irradiated within the 380 - 420 nm range (b)	p.6
6. Figure S2. POM textures shown by complex 11 at 140°C (a) and complex 12	
at 110°C (b). Pictures of complex 12 taken at 30°C with no irradiation (c)	
and irradiated within the 380 - 420 nm range (d)	p.6
7. Figure S3. Powder X-ray diffractogram of complex 11 recorded at 30°C	
before melting	p.7
8. Figure S4. The emission spectrum of complex 3 , ($\lambda_{exc} = 380$ nm,	
$\Phi = 0.08$, 1x10 ⁻⁴ M in CH ₂ Cl ₂ solution)	p.7
9. Figure S5. DSC curve for 1b (first heating-cooling cycle (a) and second	-
heating - cooling cycle (b))	p.8
10. Figure S6. DSC trace for complex 10	p.8
11. Figure S7. DSC trace for complex 11 , first heating-cooling cycle (a) and	
second heating-cooling cycle (b)	p.9
12. Figure S8. DSC trace for complex 12	p.9
13. Figure S9. The emission spectra of palladium(II) complexes recorded in	
dichloromethane solution	p.10
14. Figure S10. The solid-state emission spectra of 12 (λ_{exc} =380 nm)	p.10
15. Figure S11. The solid-state emission of 11 before and after heating	
$(\lambda_{exc}=480 \text{ nm})$	p.11
16. Figure S12. The solid-state emission of 12 before and after heating	
$(\lambda_{exc}=480 \text{ nm})$	p.11
17. References	p.11

Scheme 1. Preparation of *N*-benzoyl-*N*'-aryl thiourea derivatives $(BTU)^1$

	3	4b	9
Empirical formula	C ₂₆ H ₂₇ N ₃ O ₂ PtS	$C_{29}H_{38}Cl_4N_2O_2PtS$	C ₅₄ H ₆₆ N ₆ O ₃ Pd ₂ S ₂
M	640.66	815.56	1124.05
T/K	150(2)	150(2)	150(2)
λ/nm	0.71073 Å	0.71073Å	0.71073 Å
Crystal system	monoclinic	triclinic	triclinic
Space group	$P 2_{l}/n$	P - 1	P -1
a/ Å	15.5741(3)	7.4355(9)	10.2638(10)
b/ Å	8.17290(10)	8.2355(10)	14.4107(14)
c/ Å	19.7272(3)	26.969(3)	19.1385(16)
α/°	90	94.842(5)	73.808(3)
β/°	109.1100(10)	92.304(5)	89.864(4)
γ/°	90	104.881(5)	73.765(4)
V/Å ³	2372.61(7)	1587.1(3)	2601.3(4)
Ζ,	4	2	2
Calculated density($g.cm^{-3}$)	1.794	1.707	1.435
Absorption coefficient,µ/mm ⁻¹	6.031	4.852	0.820
F(000)	1256	808	1160
Crystal size/mm	0.34 x 0.21 x 0.07	0.52 x 0.13 x 0.02	0.49 x 0.16 x 0.1
Crystal color	yellow	yellow	yellow
θ range for data collection/ °	2.91 to 27.48	2.99 to 27.48	2.91 to 27.48
h_min, h_max	-20,20	-9,9	-13, 13
k_min, k_max	-10,9	-10,10	-18, 18
l_min, l_max	-25,23	-34 , 34	-19, 24
Reflections collected / unique	20808 / 5439	21012 / 7079	39191 / 11705
	$[R(int)^a = 0.0412]$	$[R(int)^a = 0.0499]$	$[R(int)^a = 0.0494]$
Completeness to θ_{max}	0.998	0.97	0.981
Max. and min. transmission	0.656, 0.406	0.908, 0.751	0.921, 0.787
Data / restraints / parameters	5439 / 0 / 300	7079 / 0 / 355	11705 / 0 / 596
^b Goodness-of-fit	1.033	1.04	1.051
Final <i>R</i> indices $[I>2\sigma]$	$R1^{c} = 0.0235$	$R1^{c} = 0.0412$	$R1^{c} = 0.0543$
	$wR2^d = 0.0471$	$wR2^d = 0.0688$	$wR2^d = 0.1388$
R indices (all data)	$R1^{c} = 0.0306$	$R1^{c} = 0.055,$	$R1^{c} = 0.0766$
	$wR2^d = 0.0494$	$wR2^{d} = 0.0726$	$wR2^d = 0.1609$
Largest diff. peak and hole/ e.Å ⁻³	0.605 and -0.56	1.299 and -1.976	2.062 and -1.462

Table 1. Crystallographic data for complexes.

 ${}^{a}R_{int} = \sum |F_{o}^{2} - \langle F_{o}^{2} \rangle| / \sum [F_{o}^{2}]$ ${}^{b}S = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / (n - p)\}^{1/2}$ ${}^{c}R1 = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|$ ${}^{d}wR2 = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]\}^{1/2}$ $w = 1 / [\sigma(F_{o}^{2}) + aP^{2} + bP] \text{ where } P = [2F_{c}^{2} + MAX(F_{o}^{2}, 0)] / 3$

Complex	3	4b	9	
M-C	1.980(3)	-	1.996(4)	2.059(4)
M-O	2.080(2)	-	2.068(3)	2.070(3)
M-N	2.037(2)	2.078(4)	2.069(3)	1.982(4)
M-S	2.2475(8)	2.2170(13)	2.2512(12)	2.2475(13)
Pt-Cl(1)		2.3016(13)		
Pt-Cl(2)		2.3037(13)		
C-M-N	80.59(11)	-	81.54(16)	81.28(16)
C-M-S	94.93(9)	-	93.97(13)	93.10(13)
N-M-O	91.21(9)	-	91.73(12)	92.58(13)
O-M-S	93.40(6)	-	92.46(9)	93.05(9)
N-Pt-Cl1		89.01(12)		
S-Pt-Cl1		87.80(5)		
N-Pt-Cl2		88.49(12)		
S-Pt-Cl2		94.70(5)		

Table 2. Bond lengths (Å)	and angles (°) for	r complexes 3,	4b and 9

T/(°C)	d _{exp} /Å	Indexation	$d_{calc}/Å$	Mesophase parameters
85	36.18	d ₁₀	36.2	Col _h
	20.73	d_{11}^{10}	20.8	a=41.8 Å
	11.87	d ₃₀	12.1	Z~1.5
	10.30	d ₂₂	10.45	S=1513 Å ²
	9.80	d ₃₁	10.0	
	8.93	d_{40}	9.04	
	8.16	d_{41}	8.09	
	7.70	-	-	
	7.10	d_{50}	7.23	
	4.6	h _{ch}		
	3.6	h_0		
	d _{exp} / Å	Indexation	d _{calc} /Å	Mesophase parameters
100	32.9	d ₁₀	32.9	Colh
	19.1	d ₁₁	19.0	a = 38.0 Å
	16.5	d ₂₀	16.5	Z~1.1
	12.7	d_{21}^{20}	12.5	$S_{h} = 1251 Å^{2}$
	10.9	d ₃₀	11.0	-
	6.5	-		
	4.7	h _{ch}		
	3.6	h_0		
	T/(°C) 85 100	$\begin{array}{cccc} T/(^{\circ}C) & d_{exp}/\text{\AA} \\ \hline 85 & 36.18 \\ 20.73 \\ 11.87 \\ 10.30 \\ 9.80 \\ 8.93 \\ 8.16 \\ 7.70 \\ 7.10 \\ 4.6 \\ 3.6 \\ \hline \\ & d_{exp}/\text{\AA} \\ \hline \\ 100 & 32.9 \\ 19.1 \\ 16.5 \\ 12.7 \\ 10.9 \\ 6.5 \\ 4.7 \\ 3.6 \\ \hline \end{array}$	T/(°C) $d_{exp}/Å$ Indexation 85 36.18 d_{10} 20.73 d_{11} 11.87 d_{30} 10.30 d_{22} 9.80 d_{31} 8.93 d_{40} 8.16 d_{41} 7.70 - 7.10 d_{50} 4.6 h_{ch} 3.6 h_0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 3. X-ray diffraction data for Pd(II) complexes (11 and 12)

The columnar lattice parameter was calculated with the following relationship $a = d_{10} \ge 2/3^{1/2}$, where the cross-section area was calculated as following: $S = a^2 x 3^{1/2}/2$.

Figure S1. Pictures of **10** taken at room temperature, without irradiation (a) and of the same area irradiated within the 380 - 420 nm range (b)

Figure S2. POM textures shown by complex **11** at 140° C (a) and complex **12** at 110° C (b). Pictures of complex **12** taken at 30°C with no irradiation (c) and irradiated within the 380 - 420 nm range (d)

Figure S3. Powder X-ray diffractogram of complex 11 recorded at 30°C before melting

Figure S4. The emission spectrum of complex 3, ($\lambda_{exc} = 380$ nm, $\Phi = 0.08$, 1×10^{-4} M in CH₂Cl₂ solution)

Figure S5. DSC curve for **1b** (first heating-cooling cycle (a) and second heating - cooling cycle (b))

Figure S6. DSC trace for complex 10

Figure S7. DSC trace for complex **11**, first heating-cooling cycle (a) and second heating-cooling cycle (b)

Figure S8. DSC trace for complex 12

Figure S9. The emission spectra of palladium(II) complexes recorded in dichloromethane solution

Figure S10. The solid-state emission spectra of 12 (λ_{exc} =380 nm)

Figure S11. The solid-state emission of **11** before and after heating (λ_{exc} =480 nm)

Figure S12. The solid-state emission of **12** before and after heating (λ_{exc} =480 nm)

References:

1. M. Ilis, M. Bucos, F. Dumitrascu and V. Circu, J. Mol. Struct., 2011, 987, 1.