Supporting Information for

A Highly Fluorescent Chemosensor for Zn^{2+} and the Recognition Research on Distinguishing Zn^{2+} from Cd^{2+}

Pengxuan Li, ^a Xiaoyan Zhou,^a Ruoying Huang,^b Lizi Yang, ^a Xiaoliang Tang, ^a Wei Dou, ^a Qianqian Zhao,^a and Weisheng Liu ^{*a}

^a Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

^b West China School of Public Health Sichuan University, Chengdu 610041, China

Table of contents

- 1. Absorption titration of L with Zn^{2+} and the association constant of L- Zn^{2+} system in 1:1 CH₃CN/H₂O. (Fig.S1-S2)
- 2. Absorption titration of L with Cu^{2+} and the association constant of L- Cu^{2+} system in 1:1 CH₃CN/H₂O. (Fig.S3-S4)
- 3. Absorption titration of L with Cd^{2+} in acetonitrile. (Fig.S5)
- 4. Absorption titration of L-Cd²⁺ with Cd²⁺ in acetonitrile. (Fig.S6)
- 5. Fluorescence of titration L with Zn^{2+} in acetonitrile. (Fig.S7)
- 6. Job's plot. (Fig.S8)

7. The detection limit (LOD) and association constant of L-Zn²⁺ in HEPES buffer. (Fig.S9-S10) 8. The effect of pH on L and Cd²⁺-L at room temperature in HEPES buffer solutions (Fig.S11)

9. Crystal Data and Details of the Structure Determination for $ZnL(NO_3)_2(H_2O)$ and $CdL_2(NO_3)_2$. (Table.S1)

10. Selected Bond Lengths (Å) and Bond Angles (deg) for $ZnL(NO_3)_2(H_2O)$ and $CdL_2(NO_3)_2$. (Table.S2)

11. ¹H-¹H COSY spectra of L, L-Zn²⁺ and L-Cd²⁺ in CD₃CN. (Fig.S12-Fig.S14)

12. ¹H NMR, ¹³C NMR, ESI-MS and HRMS spectra of L in CDCl₃. (Fig. S15-S18)

13. FTIR spectra of L, L- Zn^{2+} and L- Cd^{2+} . (Fig.S19-S21)

1. Absorption titration of L with Zn²⁺ and the association constant of L-Zn²⁺ system in 1:1 CH₃CN/H₂O.

The total binding constant of L with Zn^{2+} and Cu^{2+} were studied by the following equations based on a 1:1 complex expression:^{1,2}

$$\log \frac{R - R_{min}}{R_{max} - R} = \log[M] + B' - \log \xi(\lambda_2)$$
⁽¹⁾

Where R_{min} , R_{max} and R are the absorbances ratios of A_{363} nm/ A_{316} nm in the absence, presence of saturated Zn^{2+} , and addition of a given amount of Zn^{2+} at aconcentration, respectively. B' represents the binding constant. ξ represents the ratio of the fluorescent intensities at the wavelength ξ (316 nm): $A_{min}(316)/A_{max}(316)$. The total binding constant logK' was deduced (Fig.S1, Fig.S3).

$$A = A_0 + \frac{A_{max} - A_0}{2} \left\{ \left(1 + \frac{[M]}{C_L} + \frac{1}{C_L K} \right) - \sqrt{\left(1 + \frac{[M]}{C_L} + \frac{1}{C_L K} \right)^2 - 4 \times \frac{[M]}{C_L}} \right\}$$
(2)

 A_0 is the absorbance of L at 363 nm without Cu^{2+} , A is the absorbance of L at 363 nm obtained with Cu^{2+} , and A_{max} is the absorbance of L at 363 nm in the presence of

excess amount of Cu^{2+} . The obtained curve is shown in Fig. S5.

Fig.S1 Absorption spectra of L in HEPES buffer solutions (50 mM, 30 mM NaCl, pH

= 7.4, CH₃CN-H₂O = 1:1, v/v) with the increase of Zn(NO₃)₂.

Fig.S2 Ratios between absorbances at 363 nm and at 316 nm (A_{363}/A_{316}) of L in HEPES buffer solutions (50 mM, 30 mM NaCl, pH = 7.4, CH₃CN-H₂O = 1:1, v/v) versus increasing concentration of log[Zn²⁺]. The concentration of L was 1.0×10^{-4} M. 2. Absorption titration of L with Cu²⁺ and the association constant of L-Cu²⁺ system in 1:1 CH₃CN/H₂O.

Fig.S3 Absorption spectra of L in HEPES buffer solutions (50 mM, 30 mM NaCl, pH = 7.4, CH₃CN-H₂O = 1:1, v/v) with the increase of Cu (NO₃)₂. Inset: The absorbance at 363 nm. [L] = 1.0×10^{-4} M.

Fig.S4 The absorbance change of L at 363 nm in HEPES buffer solutions (50 mM, 30 mM NaCl, pH = 7.4, CH₃CN–H₂O = 1:1, v/v) with the increase of Cu(NO₃)₂. The red line is the nonlinear fitting curve obtained assuming a 1:1 association between L and Cu²⁺. The association constant was estimated to be 1.6 (\pm 0.4) × 10⁶ M⁻¹. [L] = 1.0 × 10⁻⁴ M.

3. Absorption titration of L with Cd²⁺ in acetonitrile.

Fig.S5 Absorption spectra of L in acetonitrile with the increase of $Cd(NO_3)_2$. [L] = 1.0

 $\times 10^{-4}$ M.

4. Absorption titration of L-Cd²⁺ with Cd²⁺ in acetonitrile.

Fig.S6 Absorption spectra of $L-Cd^{2+}$ in acetonitrile with the increase of $Zn(NO_3)_2$.

5. Fluorescence of titration L with Zn²⁺ in acetonitrile.

Fig.S7 Fluorescence emission spectra of L upon the addition of $Zn(NO_3)_2$ in acetonitrile. λ_{ex} = 363 nm at room temperature ([L]= 0.10 mM.) (Inset) Corresponding $Zn(NO_3)_2$ titration profile according to the fluorescence intensity, indicating 1:1 stoichiometry for Zn^{2+}/L .

6. Job's plot.

Fig.S8 Job's plot shows the 1:1 binding of L to Zn^{2+} .

7. The detection limit (LOD) and association constant of L-Zn²⁺ in HEPES buffer.

$$\mathbf{F} = F_0 + \frac{F_{max} - F_0}{2} \left\{ \left(1 + \frac{[M]}{C_L} + \frac{1}{C_L K} \right) - \sqrt{\left(1 + \frac{[M]}{C_L} + \frac{1}{C_L K} \right)^2 - 4 \times \frac{[M]}{C_L}} \right\}$$

 F_0 is the absorbance of L at 498 nm without Zn^{2+} , F is the absorbance of L at 498 nm obtained with Zn^{2+} , and F_{max} is the absorbance of L at 498 nm in the presence of excess amount of Zn^{2+} .

Fig.S9 Change in the fluorescence intensity at 498 nm in HEPES buffer solutions (50 mM, 30 mM NaCl, pH = 7.4, CH₃CN–H₂O = 1:1, v/v) with the increase of Zn(NO₃)₂. The red line is the nonlinear fitting curve obtained assuming a 1:1 association between 1 and Zn²⁺. The association constant was estimated to be 7.2 (\pm 0.5) × 10³ M^{-1} . $\lambda_{ex} = 363$ nm, [L] = 1.0×10^{-4} M.

Fig.S10 The linear dynamic response of L for Zn^{2+} and the determination of the detection limit (LOD) for Zn^{2+} in HEPES buffer (50 mM, 30 mM NaCl, pH = 7.4, CH₃CN-H₂O = 1:1, v/v).

8. The effect of pH on L and Cd²⁺-L at room temperature in HEPES buffer solutions

Fig.S11 Fluorescence intensities of L and $Cd^{2+}-L$ at various pH values at room temperature, HEPES buffer solutions (50 mM, 30 mM NaCl, pH = 7.4, CH₃CN-H₂O = 1:1, v/v).

References:

- Zhou, X. Y.; Yu, B. R.; Guo, Y. L.; Tang, X. L.; Zhang, H. H.; Liu, W. S. *Inorg. Chem.* 2010, 49, 4002.
- (2) Zhou, J. A.; Tang, X. L.; Cheng, J.; Ju, Z. H.; Yang, L. Z.; Liu, W. S.; Chen, C. Y. and Bai, D. C. *Dalton Trans.* 2012, 41, 10626.

9. Crystal Data and Details of the Structure Determination for $Zn(L)(NO_3)_2(H_2O)$ and $Cd(L)_2(NO_3)_2$.

Table S1. Crystal Data and Details of the Structure Determination for $Zn(L)(NO_3)_2(H_2O)$ and $Cd(L)_2(NO_3)_2$

	$Zn(L)(NO_3)_2(H_2O)$	$Cd(L)_2(NO_3)_2$
Empirical formula	$C_{24}H_{22}N_6O_{10}Zn$	$C_{48}H_{40}N_{10}O_{12}Cd$
Temperature /K	296(2)	293 (2)
Formula weight	619.85	984.12
Crystal system	Monoclinic	Triclinic
Space group	$P2_{1}/c$	<i>P</i> 1
a/Å	7.687 (4)	10.4777 (5)
b/Å	20.840 (11)	10.5164 (5)
c/Å	16.689 (7)	11.2131 (5)
α/deg	90	87.605 (2)
β/deg	107.626 (19)	88.003 (2)
γ/deg	90	83.719 (2)
$V/Å^3$	2548 (2)	1226.49 (10)
Ζ	4	1
Dcalcd /kg m ⁻³	1.616	1.480
μ/mm^{-1}	1.035	0.521
F(000)	1272	560
Independent reflections (Rint)	0.0614	0.0098
Reflns collectes /unique	18160/ 4748	6278 / 4316
Data/restraints /params	4748/0/ 374	4316 / 0 / 342
goodness-of-fit on F ²	1.003	1.031
final R indices $[I > 2\sigma (I)]$	$R_1 = 0.0560$	$R_1 = 0.0337$
	$wR_2 = 0.1261$	$wR_2 = 0.1107$
R indices (all data)	$R_1 = 0.0987$	$R_1 = \overline{0.0363}$
	$wR_2 = 0.1435$	$wR_2 = 0.1142$
Residual electron density/e $Å^{-3}$	-0.444 to 0.906	-0.251 to 0.876

10. Selected Bond Lengths (Å) and Bond Angles (deg) for $Zn(L)(NO_3)_2(H_2O)$ and

$Cd(L)_2(NO_3)_2.$

Table S2 Selected Bond Lengths (Å) and Bond Angles (deg)				
Table S2 Selected Bond Lengths (A) and Bond Angles (deg)	T 1 1 CO C 1	1.0.11	1 (1) 10	1 4 1 7 1 1
	Table S2, Sele	ected Bond Leng	ths (A) and Bo	nd Angles (deg)

$Zn(L)(NO_3)_2(H_2O)$		$Cd(L)_2(NO_3)_2$	
Zn1—O3 1.97	8 (3)	Cd1—01	2.301 (2)
Zn1—O7 2.04	6 (4)	Cd1—O1 ^{<u>i</u>}	2.301 (2)
Zn1—O10 2.12	7 (4)	Cd1—N1 ^{<u>i</u>}	2.314 (2)
Zn1—N3 2.15	1 (4)	Cd1—N1	2.314 (2)
Zn1—O4 2.20	7 (4)	Cd1—O4	2.346 (3)
Zn1—O5 2.22	9 (4)	Cd1—O4 ^{<u>i</u>}	2.346(3)
O3—Zn1—O7	110.66 (13)	01-Cd1-01 ⁱ	180.00 (11)
O3—Zn1—O10	88.60 (14)	01—Cd1—N1 ⁱ	91.87 (8)
O7—Zn1—O10	84.06 (17)	01 ^{<u>i</u>} —Cd1—N1 ^{<u>i</u>}	88.13 (8)
O3—Zn1—N3	97.46 (13)	O1-Cd1-N1	88.13 (8)
O7—Zn1—N3	96.50 (14)	01 ^{<u>i</u>} —Cd1—N1	91.87 (8)
O10—Zn1—N3	173.26 (15)	N1 ^{<u>i</u>} —Cd1—N1	180.0
O3—Zn1—O4	99.43 (13)	O1—Cd1—O4	88.49 (9)
O7—Zn1—O4	147.07 (14)	01 ^{<u>i</u>} —Cd1—O4	91.51 (9)
O10—Zn1—O4	83.60 (16)	N1 ^{<u>i</u>—Cd1—O4}	98.42 (9)
N3—Zn1—O4	92.44 (14)	N1-Cd1-O4	81.58(9)
O3—Zn1—O5	156.78 (14)	01—Cd1—O4 ⁱ	91.51 (9)
O7—Zn1—O5	91.49 (14)	01 ^{<u>i</u>} —Cd1—O4 ^{<u>i</u>}	88.49 (9)
O10—Zn1—O5	86.80 (14)	N1 ⁱ —Cd1—O4 ⁱ	81.58 (9)
N3—Zn1—O5	86.48 (13)	N1—Cd1—O4 ^{<u>i</u>}	98.42(9)
O4—Zn1—O5	57.44 (14)	O4—Cd1—O4 ⁱ	180.00 (14)

11. ¹H-¹H COSY spectra of L, L-Zn²⁺ and L-Cd²⁺ in CD₃CN.

Fig. S13 ¹H-¹H COSY spectra of L-Cd²⁺ in CD₃CN.

Fig. S14 ¹H-¹H COSY spectra of L-Zn²⁺ in CD₃CN.

12. ¹H NMR, ¹³C NMR ,ESI-MS and HRMS spectra of L in CDCl₃.

Fig.S15¹H NMR spectra of L in CDCl₃

Fig.S16¹³C NMR spectra of L in CDCl₃

Fig.S17 ESI-MS spectra of L

Fig.S18 HRMS spectra of L

13. FTIR spectra of L, L-Zn²⁺ and L-Cd²⁺.

Fig.S21 FTIR spectra of L-Zn²⁺