Supporting Information

Silver(I) supramolecular complexes generated from isophorone-based ligands: crystal structures and enhanced nonlinear optical properties through metal complexation

Zheng Zheng, Zhi-Peng Yu, Ming-Di Yang, Feng Jin, Li-Na Ye, Min Fang, Hong-Ping Zhou, Jie-Ying Wu, Yu-Peng Tian

College of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, 230601 Hefei, P. R. China. E-mail: zhpzhp@263.net; Fax: +86-551-5107342; Tel: +86-551-5108151

Department of Chemistry, Fuyang Normal College, Fuyang 236041, P. R. China

State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China

Corresponding author. E-mail: zhpzhp@263.net (H. -P. Zhou).

Synthesis of L^1 and L^2

Scheme S1 Synthesis of ligands L^1 and L^2.

Preparation of L^1. Under nitrogen, 4-(1H-imidazol-1-yl)benzaldehyde (2.4 g, 13.8mmol) and 2-(3,5,5-trimethyloclohex-2-enylidene)malononitrile (2.6 g, ...
13.8 mmol) were dissolved in dry acetonitrile (100 mL). 10 drops of piperidine was added and the solution was stirred at 40 °C for 8 h. After cooling the reaction mixture, the yellow precipitate was filtered, washed with acetonitrile, and dried. Yield: 2.50 g (53 %). 1H NMR: (400 Hz, CD$_3$Cl), δ (ppm): 7.92 (s, 1H), 7.63 (d, $J = 8.4$ Hz, 2H), 7.44 (d, $J = 8.4$ Hz, 2H), 7.33 (s, 1H), 7.2 (s, 1H), 7.04 (d, $J = 16.0$ Hz, 1H), 7.02 (d, $J = 16.0$ Hz, 1H), 6.88 (s, 1H), 2.62 (s, 2H), 2.48 (s, 2H), 1.10 (s, 6H). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) = 169.0, 153.1, 137.9, 135.4, 135.0, 134.8, 130.9, 130.0, 129.0, 124.1, 121.5, 117.8, 113.3, 112.6, 79.4, 43.0, 39.2, 32.0, 28.0. IR (KBr, cm$^{-1}$): 2965, 2925, 2870, 2218, 1608, 1572, 1511, 1455, 1400, 1054, 813. MALDI-TOF Calcd for C$_{22}$H$_{20}$N$_4$, 340.17; Found, 341.179.

Preparation of L2. The yellow crystals L2 was prepared according to a similar procedure of L1 using 4-(1H-1,2,4-triazol-1-yl)benzaldehyde instead of 4-(1H-imidazol-1-yl) benzaldehyde. Yield: 4.00 g (85 %). 1H NMR: (400 Hz, CD$_3$Cl), δ (ppm): 8.62 (s, 1H), 8.13 (s, 1H), 7.75 (d, $J = 8.4$ Hz, 2H), 7.66 (d, $J = 8.8$ Hz, 2H), 7.09 (d, $J = 16.0$ Hz, 1H), 7.04 (d, $J = 16.0$ Hz, 1H), 6.89 (s, 1H), 2.62 (s, 2H), 2.48 (s, 2H), 1.10 (s, 6H). 13C NMR (100 MHz, CDCl$_3$): δ (ppm) = 169.0, 153.0, 152.8, 140.7, 137.4, 135.5, 135.0, 130.2, 128.8, 124.3, 120.2, 113.2, 112.5, 79.5, 43.0, 39.2, 32.0, 28.0. IR (KBr, cm$^{-1}$): 2959, 2922, 2870, 2216, 1607, 1564, 1519, 1460, 1399, 1049, 811. MALDI-TOF Calcd for C$_{21}$H$_{19}$N$_5$, 341.16; Found, 342.171.
Fig. S1 The open aperture (right) and closed aperture (left) Z-scan data of complexes 2, 3, 4 and 7. The filled squares represent the experimental data and the solid curve is the theoretical data.