Discriminate sensing of pyrophosphate using a new tripodal tetramine-based dinuclear Zn(II) complex under indicator displacement assay approach

Sarayut Watchasit,† Pattira Suktanarak,‡ Chomchai Suksai,‡* Vithaya Ruangpornvisuti† and Thawatchai Tuntulani †‡

†Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 10330.
‡ Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand, 20131.

Content

Scheme S1 Synthetic procedure of ligand L and Zn₂L. S3

Figure S1 ¹H-NMR spectrum of ligand L in CDCl₃. S3

Figure S2 ¹³C-NMR Spectrum of ligand L in CDCl₃. S4

Figure S3 ¹H-NMR spectrum of Zn₂L in 20% (v/v) D₂O/CD₃CN. S4

Figure S4 ¹³C-NMR spectrum of Zn₂L in 20% (v/v) D₂O/CD₃CN. S5

Figure S5 HMQC-NMR spectrum of Zn₂L in CD₃CN. S5

Table S1 Total and relative energies of all the B3LYP/LANL2DZ–optimized structures of six conformers of the dimeric 2:2 species. S6

Figure S6 DFT/B3LYP/LANL2DZ-optimized structure of the dimeric 2:2 species of C1 conformer. S7

Figure S7 DFT/B3LYP/LANL2DZ-optimized structure of the dimeric 2:2 species of C2 conformer. S8

Figure S9 DFT/B3LYP/LANL2DZ-optimized structure of the dimeric 2:2 species of P1 conformer. S9

Figure S10 DFT/B3LYP/LANL2DZ-optimized structure of the dimeric 2:2 species of P2 conformer. S10

Figure S11 DFT/B3LYP/LANL2DZ-optimized structure of the dimeric 2:2 species of P3 conformer. S11

Figure S12 ¹H NMR spectra of 1:1 ratio of ensemble formation between Zn₂L:MTB (5 mM) upon addition of various concentration of PPi S12

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014
(0.05 M) in 20% (v/v) D$_2$O:CD$_3$CN.

Figure S13 1H NMR spectra of 1:2 ratio of ensemble formation between Zn$_2$L:2MTB (5 mM) upon addition of various concentration of PPI (0.05 M) in 20% (v/v) D$_2$O:CD$_3$CN.

Figure S14 31P NMR spectra of [Zn$_2$L·MTB] (5 mM) upon addition of various concentration of PPI (0.05 M) in 20% (v/v) D$_2$O:CD$_3$CN.

Figure S15 31P NMR spectra of [Zn$_2$L·2MTB] (5 mM) upon addition of various concentration of PPI (0.05 M) in 20% (v/v) D$_2$O:CD$_3$CN.

Figure S16 (a) UV/vis spectra obtained by addition of Zn$_2$L (400 μM) to a solution of indicator PV (20 μM) in HEPES buffered pH 7.4 in 20% (v/v) H$_2$O/CH$_3$CN solution, (b) Job’s plot analysis of PV-Zn$_2$L ensemble. (c) A plot of absorption against concentration of Zn$_2$L titrated in PV Zn$_2$L ensemble.

Figure S17 (a) UV/vis spectra obtained by addition of Zn$_2$L(400 μM) to a solution of indicator BPG (20 μM) in HEPES buffered pH 7.4 in 20% (v/v) H$_2$O/CH$_3$CN solution, (b) Job’s plot analysis of BPG-Zn$_2$L ensemble, (c) A plot of absorption against concentration of Zn$_2$L titrated in BPG.

Figure S18 (a) UV/vis spectra obtained by addition of Zn$_2$L(400 μM) to a solution of indicator XO (20 μM) in HEPES buffered pH 7.4 in 20% (v/v) H$_2$O/CH$_3$CN solution, (b) Job’s plot analysis of XO-Zn$_2$L ensemble, (c) A plot of absorption against concentration of Zn$_2$L titrated in XO.

Figure S19 A plot of absorption against concentration of Zn$_2$L titrated in MTB.

Figure S20 Calibration curve for detection of PPI using MTB-Zn$_2$L ensemble.
Scheme S1. Synthetic procedure of L and Zn₂L. (i) acetronitrile, reflux 12 h, (ii) NaBH₄, MeOH, reflux 12 h, (iii) Zn(ClO₄)₂, EtOH, reflux 12 h.

Figure S1. ^1^H-NMR spectrum of ligand L in CDCl₃.
Figure S2: 13C-NMR Spectrum of ligand L in CDCl$_3$.

Figure S3: 1H-NMR spectrum of Zn_2L in 20% (v/v) D$_2$O/CD$_3$CN.
Figure S4. 13C-NMR spectrum of Zn$_2$L in 20% (v/v) D$_2$O/CD$_3$CN.

Figure S5. HMQC-NMR spectrum of Zn$_2$L in CD$_3$CN.
Table S1 Total and relative energies of all the B3LYP/LANL2DZ-optimized structures of six conformers of the dimeric 2:2 species.

<table>
<thead>
<tr>
<th>Conformers a</th>
<th>E_{total} b</th>
<th>ΔE_{rel} c</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>-6392.7827862</td>
<td>75.37</td>
</tr>
<tr>
<td>C2</td>
<td>-6392.9028947</td>
<td>0.00</td>
</tr>
<tr>
<td>C3</td>
<td>-6392.8176487</td>
<td>53.49</td>
</tr>
<tr>
<td>P1</td>
<td>-6392.7687205</td>
<td>84.20</td>
</tr>
<tr>
<td>P2</td>
<td>-6392.7596734</td>
<td>89.87</td>
</tr>
<tr>
<td>P3</td>
<td>-6392.7567471</td>
<td>91.71</td>
</tr>
</tbody>
</table>

a Conformers are named according to cross (C) or parallel (P) alignment of two anthracene units of the dimeric species.
b Total energies are in au.
c Relative energies compared with the most stable conformer (C2), in kcal/mol.
d The most stable conformer.
Figure S6. DFT/B3LYP/LANL2DZ-optimized structure of the dimeric 2:2 species of C1 conformer. Top and bottom images are top and front views, respectively.
Figure S7. DFT/B3LYP/LANL2DZ-optimized structure of the dimeric 2:2 species of C2 conformer as the most stable one. Top and bottom images are top and front views, respectively.
Figure S8. DFT/B3LYP/LANL2DZ-optimized structure of the dimeric 2:2 species of C3 conformer. Top and bottom images are top and front views, respectively.
Figure S9. DFT/B3LYP/LANL2DZ-optimized structure of the dimeric 2:2 species of P1 conformer. Top and bottom images are top and front views, respectively.
Figure S10. DFT/B3LYP/LANL2DZ-optimized structure of the dimeric 2:2 species of P2 conformer. Top and bottom images are top and front views, respectively.
Figure S11. DFT/B3LYP/LANL2DZ-optimized structure of the dimeric 2:2 species of P3 conformer. Top and bottom images are top and front views, respectively.
Figure S12. 1H NMR spectra of 1:1 ratio of ensemble formation between Zn$_2$L:MTB (5 mM) upon addition of various concentrations of PPi (0.05 M) in 20% (v/v) D$_2$O:CD$_3$CN.
Figure S13. 1H NMR spectra of 1:2 ratio of ensemble formation between $\text{Zn}_2\text{L}:\text{MTB}$ (5 mM) upon addition of various concentration of PPi (0.05 M) in 20% (v/v) $\text{D}_2\text{O}:\text{CD}_3\text{CN}$.

$\text{[Zn}_2\text{L}:2\text{MTB}] + \text{PPi 2.0 equiv.}$

$\text{[Zn}_2\text{L}:2\text{MTB}] + \text{PPi 1.5 equiv.}$

$\text{[Zn}_2\text{L}:2\text{MTB}] + \text{PPi 1.0 equiv.}$

$\text{[Zn}_2\text{L}:2\text{MTB}] + \text{PPi 0.5 equiv.}$

$\text{[Zn}_2\text{L}:2\text{MTB}]$
Fig S14. 31P NMR spectra of $[\text{Zn}_2\text{L·MTB}]$ (5 mM) upon addition of various concentrations of PPi (0.05 M) in 20% (v/v) $\text{D}_2\text{O}:\text{CD}_3\text{CN}$.
Fig S15. 31P NMR spectra of [Zn$_2$L·2MTB] (5 mM) upon addition of various concentrations of PPI (0.05 M) in 20% (v/v) D$_2$O:CD$_3$CN.
Figure S16. (a) UV/vis spectra obtained by addition of Zn$_2$L (400 μM) to a solution of indicator PV (20 μM) in HEPES buffered pH 7.4 in 20% (v/v) H$_2$O/CH$_3$CN solution, (b) Job’s plot analysis of PV-Zn$_2$L ensemble, (c) A plot of absorption against concentration of Zn$_2$L titrated in PV. The red solid line is nonlinear least-squares fittings of the titration profiles using SPECFIT32 program.
Figure S17. (a) UV/vis spectra obtained by addition of Zn$_2$L (400 μM) to a solution of indicator BPG (20 μM) in HEPES buffered pH 7.4 in 20% (v/v) H$_2$O/CH$_3$CN solution, (b) Job’s plot analysis of BPG-Zn$_2$L ensemble, (c) A plot of absorption against concentration of Zn$_2$L titrated in BPG. The red solid line is nonlinear least-squares fittings of the titration profiles using SPECFIT32 program.
Figure S18. (a) UV/vis spectra obtained by addition of Zn$_2$L (400 μM) to a solution of indicator XO (20 μM) in HEPES buffered pH 7.4 in 80/20 (% v/v) CH$_3$CN/H$_2$O solution, (b) Job’s plot analysis of XO-Zn$_2$L ensemble, C) A plot of absorption against concentration of Zn$_2$L titrated in XO. The red solid line is nonlinear least-squares fittings of the titration profiles using SPECFIT32 program.

Figure S19. A plot of absorption against concentration of Zn$_2$L titrated in MTB. The red solid line is nonlinear least-squares fittings of the titration profiles using SPECFIT32 program.
Figure S20. Calibration curve for detection of PPi using MTB-Zn₂L ensemble.