Rapid microwave-assisted sol-gel preparation of Pd-substituted $LnFeO_3$ ($Ln = Y$, La): Phase formation and catalytic activity

Lauren M. Misch, Alexander Birkel, C. Adrian Figg, Brett P. Fors, Craig J. Hawker, Galen D. Stucky and Ram Seshadri

Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory University of California, Santa Barbara, CA 93106 USA

Supplementary information

Energy-dispersive X-ray spectroscopy mapping data of (a) $LaFe_{0.95}Pd_{0.05}O_{3-δ}$ and (b) $YFe_{0.95}Pd_{0.05}O_{3-δ}$. Uniform distribution of Pd is observed in both samples.
Energy-dispersive X-ray spectroscopy elemental analysis data of (a) YFe$_{1-x}$Pd$_x$O$_3$-δ and (b) LaFe$_{1-x}$Pd$_x$O$_3$-δ. The Pd region is magnified 100× to show that Pd content increases with doping concentration.
3-Phenylpyridine (Figure 8(a)). Following the general procedure, a mixture of 3-chloropyridine (95 µL, 1.0 mmol), phenylboronic acid (171 mg, 1.4 mmol), LaFe$_{0.95}$Pd$_{0.05}$O$_{3-\delta}$ (2 mg, 0.04 mol%), SPhos (4.1 mg, 1 mol%), K$_2$CO$_3$ (193 mg, 1.4 mmol), and the solvent (1:1 i-PrOH/H$_2$O, 2 mL) was heated to 80°C for 20 h. The crude product was purified via the Biotage SP4 (silica-packed 25 g snap column; 0-25% EtOAc/hexanes) to provide the title compound as a clear oil (143 mg, 92%). 1H NMR (600 MHz, CDCl$_3$) δ: 8.82 (s, 1H), 8.56 (d, J = 3.5 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 7.4 Hz, 2H), 7.43 (t, J = 7.7 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.30 (dd, J = 4.7 Hz, J = 7.8 Hz, 1H) ppm. 13C NMR (600 MHz, CDCl$_3$) δ: 148.4, 148.3, 137.8, 136.6, 134.3, 129.1, 128.1, 127.1, 123.5 ppm. IR (neat, cm$^{-1}$): 3030, 1581, 1450, 1407, 1024, 1005, 812, 712, 698. HRMS-EIMS (m/z): M$^+$ calcd for C$_{11}$H$_9$N, 155.0735; found, 155.0733.

3-Phenylpyridine (Figure 8(b)). Following the general procedure, a mixture of 3-bromopyridine (96 µL, 1.0 mmol), phenylboronic acid (171 mg, 1.4 mmol), LaFe$_{0.95}$Pd$_{0.05}$O$_{3-\delta}$ (2 mg, 0.04 mol%), SPhos (4.1 mg, 1 mol%), K$_2$CO$_3$ (193 mg, 1.4 mmol), and the solvent (1:1 i-PrOH/H$_2$O, 2 mL) was heated to 80°C for 20 h. The crude product was purified via the Biotage SP4 (silica-packed 25 g snap column; 0-25% EtOAc/hexanes) to provide the title compound as a clear oil (137 mg, 88%). 1H NMR (600 MHz, CDCl$_3$) δ: 8.74 (s, 1H), 8.47 (d, J = 3 Hz, 1H), 7.74 (d, J = 7.2 Hz, 1H), 7.45 (d, J = 7.2, 2H), 7.34 (t, J = 7.2, 2H), 7.28 (t, J = 7.2 Hz, 1H), 7.22 (dd, J = 4.8 Hz, J = 7.8 Hz, 1H) ppm. 13C NMR (600 MHz, CDCl$_3$) δ: 148.2, 148.1, 137.8, 134.5, 128.1, 127.1, 123.6 ppm. IR (neat, cm$^{-1}$): 3031, 1581, 1450, 1407, 1024, 1005, 812, 710, 696. HRMS-EIMS (m/z): M$^+$ calcd for C$_{11}$H$_9$N, 155.0735; found, 155.0731.

3-(3-Methoxyphenyl)pyridine (Figure 8(c)). Following the general procedure, a mixture of 3-chloropyridine (95 µL, 1.0 mmol), 3-methoxyphenylboronic acid (213 mg, 1.4 mmol), LaFe$_{0.95}$Pd$_{0.05}$O$_{3-\delta}$ (2 mg, 0.04 mol%), SPhos (4.1 mg, 1 mol%), K$_2$CO$_3$ (193 mg, 1.4 mmol), and the solvent (1:1 i-PrOH/H$_2$O, 2 mL) was heated to 80°C for 20 h. The crude product was purified via the Biotage SP4 (silica-packed 25 g snap column; 0-20% EtOAc/hexanes) to provide the title compound as a clear oil (135 mg, 73%). 1H NMR (600 MHz, CDCl$_3$) δ: 8.81 (s, 1H), 8.54 (d, J = 3.5 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.33 (t, J = 7.9, 1H), 7.29 (dd, J = 4.9 Hz, J = 7.9, 1H), 7.11 (d, J = 7.7 Hz, 1H), 7.06 (s, 1H), 6.90 (d, J = 8.2 Hz, 1H), 3.80 (s, 3H) ppm. 13C NMR (600 MHz, CDCl$_3$) δ: 160.1, 148.4, 148.1, 139.1, 136.5, 134.5, 130.1, 123.6, 119.5, 113.4, 112.9, 55.3 ppm. IR (neat, cm$^{-1}$): 1601, 1585, 1470, 1402, 1299, 1047, 1015, 779, 711, 696. HRMS-EIMS (m/z): M$^+$ calcd for C$_{12}$H$_{11}$NO, 185.0841; found, 185.0844.

2-(Thiophen-2-yl)pyridine (Figure 8(d)). Following the general procedure, a mixture of 2-bromopyridine (96 µL, 1.0 mmol), 2-thienylboronic acid (179 mg, 1.4 mmol), LaFe$_{0.95}$Pd$_{0.05}$O$_{3-\delta}$ (2 mg, 0.04 mol%), SPhos (4.1 mg, 1 mol%), K$_2$CO$_3$ (193 mg, 1.4 mmol), and the solvent (1:1 i-PrOH/H$_2$O, 2 mL) was heated to 80°C for 20 h. The crude product was purified via the Biotage SP4 (silica-packed 25 g snap column; 0-25% EtOAc/hexanes) to provide the title compound as a clear oil (125 mg, 78%). 1H NMR (600 MHz, CDCl$_3$) δ: 8.53 (d, J = 4.8 Hz, 1H), 7.61 (m, 2H), 7.54 (d, J = 3.6 Hz, 1H), 7.35 (d, J = 4.8 Hz, 1H), 7.08 (m, 2H) ppm. 13C NMR (600 MHz, CDCl$_3$) δ: 152.5, 149.5, 144.8, 136.7, 128.0, 127.5, 124.6, 121.9, 118.8 ppm. IR (neat, cm$^{-1}$): 2920, 2851, 1580, 1560, 1464, 1435, 1421, 992, 853, 712. HRMS-EIMS (m/z): M$^+$ calcd for C$_9$H$_7$NS, 161.0299; found, 161.0306.

2-Methylbiphenyl (Figure 8(e)). Following the general procedure, a mixture of 2-chlorotoluene (117 µL, 1.0 mmol), phenylboronic acid (171 mg, 1.4 mmol), LaFe$_{0.95}$Pd$_{0.05}$O$_{3-\delta}$ (2 mg, 0.04
mol%), SPhos (4.1 mg, 1 mol%), K$_2$CO$_3$ (193 mg, 1.4 mmol), and the solvent (1:1 i-PrOH/H$_2$O, 2 mL) was heated to 80°C for 20 h. The crude product was purified via the Biotage SP4 (silica-packed 25 g snap column; 0-2% EtOAc/hexanes) to provide the title compound as a clear oil (112 mg, 67%). 1H NMR (600 MHz, CDCl$_3$) δ: 7.29 (m, 2H), 7.22 (m, 3H), 7.14 (m, 4H), 2.17 (s, 3H) ppm. 13C NMR (600 MHz, CDCl$_3$) δ: 142.1, 142.0, 130.4, 129.9, 129.3, 128.1, 127.3, 126.8, 125.8, 20.5 ppm. IR (neat, cm$^{-1}$): 3020, 1598, 1478, 1438, 1380, 1072, 1009, 773, 726, 701.

HRMS-EIMS (m/z): [M-H]$^+$ calcd for C$_{13}$H$_{11}$, 167.0861; found, 167.0869

Methyl biphenyl-3-carboxylate (Figure 8(f)). Following the general procedure, a mixture of methyl 3-chlorobenzoate (139 µL, 1.0 mmol), phenylboronic acid (171 mg, 1.4 mmol), LaFe$_{0.95}$Pd$_{0.05}$O$_{3-\delta}$ (2 mg, 0.04 mol%), SPhos (4.1 mg, 1 mol%), K$_2$CO$_3$ (193 mg, 1.4 mmol), and the solvent (1:1 i-PrOH/H$_2$O, 2 mL) was heated to 80°C for 20 h. The crude product was purified via the Biotage SP4 (silica-packed 25 g snap column; 0-10% EtOAc/hexanes) to provide the title compound as a clear oil (138 mg, 65%). 1H NMR (600 MHz, CDCl$_3$) δ: 8.17 (s, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.48 (d, J = 7.3 Hz, 2H), 7.36 (t, J = 7.7 Hz, 1H), 7.32 (t, J = 7.7 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 3.80 (s, 3H) ppm. 13C NMR (600 MHz, CDCl$_3$) δ: 167.0, 141.5, 140.1, 131.5, 130.7, 128.9, 128.8, 128.4, 128.3, 127.8, 127.1, 52.2 ppm. IR (neat, cm$^{-1}$): 1719, 1454, 1435, 1300, 1110, 1085, 1049, 741, 696, 671. HRMS-EIMS (m/z): M$^+$ calcd for C$_{14}$H$_{12}$O$_2$, 212.0837; found, 212.0846.

3-Methoxybiphenyl (Figure 8(g)). Following the general procedure, a mixture of chlorobenzene (101 µL, 1.0 mmol), 3-methoxyphenylboronic acid (213 mg, 1.4 mmol), LaFe$_{0.95}$Pd$_{0.05}$O$_{3-\delta}$ (2 mg, 0.09 mol%), SPhos (4.1 mg, 1 mol%), K$_2$CO$_3$ (193 mg, 1.4 mmol), and the solvent (1:1 i-PrOH/H$_2$O, 2 mL) was heated to 80°C for 20 h. The crude product was purified via the Biotage SP4 (silica-packed 25 g snap column; 0-12% EtOAc/hexanes) to provide the title compound as a clear oil (94 mg, 51%). 1H NMR (600 MHz, CDCl$_3$) δ: 7.62 (d, J = 7.3 Hz, 2H), 7.46 (t, J = 7.7 Hz, 1H), 7.38 (m, 2H), 7.22 (d, J = 7.6 Hz, 1H), 7.17 (s, 1H), 6.93 (dd, J = 2.0 Hz, J = 8.3 Hz, 1H), 3.88 (s, 3H) ppm. 13C NMR (600 MHz, CDCl$_3$) δ: 159.9, 142.8, 141.1, 129.8, 128.8, 128.3, 127.4, 127.2, 119.7, 112.9, 112.7, 55.3. IR (neat, cm$^{-1}$): 1598, 1573, 1477, 1420, 1295, 1212, 1053, 1038, 1019, 697. HRMS-EIMS (m/z): M$^+$ calcd for C$_{13}$H$_{12}$O, 184.0888; found, 184.0893.