Supporting information

Guanine-Copper coordination polymers: Crystal analysis and application as thin film precursors

N. Nagapradeep, a V. Venkatesh, a S. K. Tripathi, b Sandeep Verma* a,c

a Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016 (UP), India. b Defence Materials & Stores Research & Development Establishment (DMSRDE), DMSRDE PO, G. T. Road, Kanpur-208013 (UP), India. c DST Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur-208016 (UP), India.

E-mail: sverma@iitk.ac.in
Table S1: Selected hydrogen bonding distances (Å) and bond angles (°) in 1–3.

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>D—H…A</th>
<th>D…A</th>
<th>H…A</th>
<th>D—H…A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)—H(1)...Cl(2)</td>
<td>3.145(3)</td>
<td>2.31</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>N(2A)—H(2A1)...Cl(2)</td>
<td>3.435(3)</td>
<td>2.66</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>N(1A)—H(1A)...O(6A)</td>
<td>2.891(3)</td>
<td>2.05</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>N(1B)—H(1B)...Cl(2)</td>
<td>3.408(3)</td>
<td>2.56</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>N(2A)—H(2A2)...O(6B)</td>
<td>2.824(4)</td>
<td>2.04</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>N(2)—H(2A)...Cl(3)</td>
<td>3.360(3)</td>
<td>2.52</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>N(2)—H(2B)...O(1M)</td>
<td>2.983(4)</td>
<td>2.20</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>N(2)—H(2B1)...O(2M)</td>
<td>2.930(4)</td>
<td>2.11</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>O(2M)—H2O2...O(6A)</td>
<td>2.859(4)</td>
<td>2.54</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>O(1M)—H2O1...Cl(1)</td>
<td>3.160(3)</td>
<td>2.33</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>C(8)—H(8)...Cl(1)</td>
<td>3.552(3)</td>
<td>2.63</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>C(8A)—H(8A)...O(6)</td>
<td>2.950(5)</td>
<td>2.42</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>C(8A)—H(8A)...Cl(3)</td>
<td>3.573(4)</td>
<td>2.75</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>C(8B)—H(8B)...Cl(3)</td>
<td>3.656(4)</td>
<td>2.78</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>C(8B)—H(8B)...O(6)</td>
<td>2.972(4)</td>
<td>2.48</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>C(11A)—H(11D)...Cl(1)</td>
<td>3.627(8)</td>
<td>2.79</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>C(11C)—H(11E)...O(1M)</td>
<td>3.182(10)</td>
<td>2.35</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>C(11C)—H(11E)...N(9B)</td>
<td>2.685(11)</td>
<td>2.30</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)—H(1)...Cl(2)</td>
<td>3.201(5)</td>
<td>2.38</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>N(2)—H(2A)...Cl(1)</td>
<td>3.403(6)</td>
<td>2.58</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>N(2)—H(2B)...Cl(2)</td>
<td>3.423(6)</td>
<td>2.67</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>C(8)—H(8)...Cl(1)</td>
<td>3.494(6)</td>
<td>2.69</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>C(9)—H(9B)...Cl(1)</td>
<td>3.616(6)</td>
<td>2.71</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>C(11)—H(11)...O(6)</td>
<td>3.172(7)</td>
<td>2.24</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)—H(1)...Br(2)</td>
<td>3.313(8)</td>
<td>2.50</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>N(2)—H(2A)...Br(1)</td>
<td>3.470(8)</td>
<td>2.64</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>N(2)—H(2B)...Br(2)</td>
<td>3.473(8)</td>
<td>2.70</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>C(8)—H(8)...Br(1)</td>
<td>3.601(9)</td>
<td>2.79</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>C(9)—H(9A)...Br(1)</td>
<td>3.687(9)</td>
<td>2.77</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>C(11)—H(11)...O(6)</td>
<td>3.212(11)</td>
<td>2.28</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>

#Symmetry of A: (i) -1+x,y,z (ii) 1-x,1-y,1-z (iii) 2-x,1-y,1-z (iv) x,-1+y,z (v) 1+x,y,z (vi) -1+x,-1+y,z (vii) 2-x,2-y,-z (viii) 1+x,1+y,z (ix) 1-x,-y,1-z (x) -1+x,1/2-y,-1/2+z (xi) 1-x,1/2+y,3/2-z (xii) 1+x,y,z (xiii) -1+x,1/2-y,-1/2+z (xiv) 1-x,1/2+y,1/2-z; where A= acceptor and D= donor
Table S2: Observed bond lengths (Å) between constituent atoms.

<table>
<thead>
<tr>
<th>Bond</th>
<th>(\text{N}_9\text{-propargyl})</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2-N1</td>
<td>1.369</td>
<td>1.361</td>
<td>1.364</td>
</tr>
<tr>
<td>C2-N2</td>
<td>1.335</td>
<td>1.337</td>
<td>1.332</td>
</tr>
<tr>
<td>C2-N3</td>
<td>1.319</td>
<td>1.332</td>
<td>1.326</td>
</tr>
<tr>
<td>C4-C5</td>
<td>1.387</td>
<td>1.366</td>
<td>1.366</td>
</tr>
<tr>
<td>C4-N9</td>
<td>1.362</td>
<td>1.371</td>
<td>1.363</td>
</tr>
<tr>
<td>C4-N3</td>
<td>1.351</td>
<td>1.356</td>
<td>1.367</td>
</tr>
<tr>
<td>C5-N7</td>
<td>1.390</td>
<td>1.384</td>
<td>1.391</td>
</tr>
<tr>
<td>C5-C6</td>
<td>1.408</td>
<td>1.417</td>
<td>1.421</td>
</tr>
<tr>
<td>C6-O6</td>
<td>1.241</td>
<td>1.226</td>
<td>1.228</td>
</tr>
<tr>
<td>C6-N1</td>
<td>1.393</td>
<td>1.403</td>
<td>1.401</td>
</tr>
<tr>
<td>C8-N7</td>
<td>1.304</td>
<td>1.321</td>
<td>1.308</td>
</tr>
<tr>
<td>C8-N9</td>
<td>1.380</td>
<td>1.375</td>
<td>1.376</td>
</tr>
<tr>
<td>C9-N9</td>
<td>1.467</td>
<td>1.473</td>
<td>1.482</td>
</tr>
<tr>
<td>C9-C10</td>
<td>1.456</td>
<td>1.484</td>
<td>1.470</td>
</tr>
<tr>
<td>C10-C11</td>
<td>1.183</td>
<td>1.213</td>
<td>1.214</td>
</tr>
<tr>
<td>Cu1-C10</td>
<td>------</td>
<td>2.053</td>
<td>2.066</td>
</tr>
<tr>
<td>Cu1-C11</td>
<td>------</td>
<td>2.077</td>
<td>2.072</td>
</tr>
<tr>
<td>Cu1-N3</td>
<td>------</td>
<td>2.052</td>
<td>2.051</td>
</tr>
<tr>
<td>Cu2-N7</td>
<td>------</td>
<td>1.952</td>
<td>1.954</td>
</tr>
</tbody>
</table>
Figure S1: (a) Crystal lattice of 3 when viewed along α-axis. (b) Corresponding bond lengths and distances (Å) in 3.

![Crystal lattice and bond lengths](image)

Figure S2: SEM images of thin films from 1–3 ($T_1 = 450 \, ^{\circ}\text{C}$; a, c, e), ($T_2 = 600 \, ^{\circ}\text{C}$; b, d, f). Scale: 1 µm.

![SEM images](image)
Figure S3: SEM images of thin films from CuCl$_2$, CuBr$_2$ on Si(100) (T$_1$ = 450 °C; a, c), (T$_2$ = 600 °C; b, d). scale: 2 µm.

Figure S4: AFM images of thin film from 1. (a) AFM image at T$_1$ [1.9×1.9 µm]. (b) AFM image at T$_2$ [5×5 µm]. (c & e) 3D image and diameter-height profile of panel [a] respectively. (d & f) 3D image and diameter-height profile of panel [b] respectively.
Figure S5: AFM images of thin film from 2. (a) AFM image at T₁ [1.9×1.9 µm]. (b) AFM image at T₂ [1.3×1.3 µm]. (c & e) 3D image and diameter-height profile of panel [a] respectively. (d & f) 3D image and diameter-height profile of panel [b] respectively.

![AFM images](image1)

Figure S6: AFM images of thin film from 3. (a) AFM image at T₁ [2.1×2.1 µm]. (b) AFM image at T₂ [0.9×1.3 µm]. (c & e) 3D image and diameter-height profile of panel [a] respectively. (d & f) 3D image and diameter-height profile of panel [b] respectively.

![AFM images](image2)
Figure S7: IR spectrum of N9-propargylguanine.
Figure S8: IR spectrum of 2.
Figure S9: IR spectrum of 3.
Figure S10: ESI-HRMS of 1.

\[(\text{IL-allyl})_2\text{Cu}^\text{II}+\text{MeO}\text{]+} \quad \text{(2L-2Cu}^\text{II}+\text{Cl)]}^+\]

- Calculated: 243.9896, 245.9878
- Found: 244.0065, 246.0057

\[\text{L = N9-allyl} \quad \text{guanine} \]
Figure S11: ESI-HRMS of 2.
Figure S12: ESI-HRMS of 3.
Figure S13: PXRD spectra of complexes.

(i) PXRD pattern of 1. (a) simulated pattern at 100 K (b) observed pattern at 298 K

(ii) PXRD pattern of 2. (a) simulated pattern at 100 K (b) observed pattern at 298 K
(iii) PXRD pattern of 3. (a) simulated pattern at 100 K (b) observed pattern at 298 K

The peak correspondence is marked with symbols. The reason for some of peaks are shifted may be attributed to difference in temperature for simulated and observed PXRD data, which causes a difference in the inter-planar distances, thus changing the θ values.