Electronic Supplementary Information

Synthesis, Structural Characterization, and Multichannel Anion and Cation Sensing Studies of a Bifunctional Ru(II) Polypyridyl-Imidazole Based Receptor

Shyamal Das, Srikanta Karmakar, Sourav Mardanya, and Sujoy Baitalik*^a

Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India

Bond distances	Bond distances(angstrom)		
Ru1-N1	2.079(5)		
Ru1-N4	2.069(6)		
Ru1-N8	2.044(6)		
Ru1-N9	2.067(6)		
Ru1-N10	2.037(6)		
Ru1-N11	2.029(6)		
Bond angles(de	Bond angles(degree)		
N1-Ru1-N4	78.8(2)		
N1-Ru1-N8	173.8(3)		
N1-Ru1-N9	95.5(2)		
N1-Ru1-N10	87.6(2)		
N1-Ru1-N11	95.5(2)		
N4-Ru1-N8	99.3(2)		
N4-Ru1-N9	83.4(2)		
N4-Ru1-N10	96.8(2)		
N4-Ru1-N11	172.9(2)		
N8-Ru1-N9	78.4(3)		
N8-Ru1-N10	98.5(2)		
N8-Ru1-N11	86.9(2)		
N9-Ru1-N10	176.8(2)		
N9-Ru1-N11	101.5(2)		
N10-Ru1-N11	78.6(2)		

Table S1 Selected bond distances (Å) and bond angles (deg) for 1

	Detection Limit / M		
		In MeCN	In H ₂ O
bsorption	F ⁻	4.34×10 ⁻⁹	
	AcO	1.03×10 ⁻⁸	
	$H_2PO_4^-$	2.30×10 ⁻⁶	
		1.89×10 ⁻⁵	
A	Fe ²⁺	6.68×10 ⁻⁹	2.18×10 ⁻⁷
Emission	F	8.19×10 ⁻⁹	4.75×10 ⁻⁵
	AcO	1.19×10 ⁻⁸	
	$H_2PO_4^-$	1.99×10 ⁻⁶	
		1.90×10 ⁻⁵	
	Fe ²⁺	6.78×10 ⁻⁹	2.38×10 ⁻⁷

Table S2 Spectrophotometric and fluorometric detection limit of 1 in MeCN and	l H ₂ O

Fig. S1. ¹H NMR (300 MHz) spectrum of dipy-Hbzim-tpy in DMSO- d_6 .

Fig. S2 ¹H NMR (500 MHz) spectrum of 1 in DMSO- d_6 .

Fig. S3 Experimental ESI mass spectrum of 1 in acetonitrile.

Fig. S4 1 H- 1 H COSY spectrum of **1** DMSO- d_{6} .

7

Fig. S5 Time-resolved luminescence decay profiles of **1** at room temperature in different solvents. Lifetimes of **1** in different solvents are given in the inset of the figure.

Fig. S6 Changes in UV-vis absorption and photoluminescence spectra of in acetonitrile upon addition of AcO⁻ (a and c, respectively) and OH⁻ (b and d, respectively) ions.

Fig. S7 Changes in UV-vis absorption (a and b) and photoluminescence (c and d) spectra of 1 in acetonitrile upon incremental addition of $H_2PO_4^-$.

Fig. S8 Changes in UV-vis absorption (a) and photoluminescence (b) spectra of 1 in acetonitrile upon addition of HSO_4^- ion.

Fig. S9 Changes in photoluminescence spectra (a) and time-resolved luminescence decay profiles (b) of 1 in acetonitrile at room temperature on incremental addition of HClO₄. The inset shows the change of emission intensity (a) and lifetimes (b) of 1 as a function of the equivalent of HClO₄ added.

Fig. S10 (a) Absorbance changes during the titration of **1** $(2.0 \times 10^{-5} \text{ M})$ with F⁻ $(5.0 \times 10^{-5} \text{ M})$ in acetonitrile. Normalized absorbance between the minimum absorbance and the maximum absorbance. (b) A plot of $(A-A_{min})/(A_{max}-A_{min})$ vs Log([F⁻]), the calculated detection limit of receptor is $4.34 \times 10^{-9} \text{ M}$.

Fig. S11 (a) Absorbance changes during the titration of **1** $(2.0 \times 10^{-5} \text{ M})$ with AcO⁻ $(5.0 \times 10^{-3} \text{ M})$ in acetonitrile. Normalized absorbance between the minimum absorbance and the maximum absorbance. (b) A plot of $(A-A_{min})/(A_{max}-A_{min})$ vs Log([AcO⁻]), the calculated detection limit of receptor is $1.03 \times 10^{-8} \text{ M}$.

Fig. S12 (a) Luminescence changes during the titration of $\mathbf{1}$ (2.0×10^{-5} M) with F⁻ (5.0×10^{-3} M) in acetonitrile, inset: Normalized intensity between the minimum intensity and the maximum intensity. (b) A plot of (I-I_{min})/(I_{max}-I_{min}) vs Log([F⁻]), the calculated detection limit of receptor is 8.19×10^{-9} M.

Fig. S13 (a) Luminescence changes during the titration of **1** $(2.0 \times 10^{-5} \text{ M})$ with AcO⁻ $(5.0 \times 10^{-3} \text{ M})$ in acetonitrile, inset: Normalized intensity between the minimum intensity and the maximum intensity. (b) A plot of $(\text{I-I}_{min})/(\text{I}_{max}-\text{I}_{min})$ vs Log([AcO⁻]), the calculated detection limit of receptor is $1.19 \times 10^{-8} \text{ M}$.

Fig. S14 Changes in UV-vis absorption (a) and photoluminescence spectra (b) of 1 in water upon addition of F^- ion.

Fig. S15 (a) Luminescence changes during the titration of $1 (2.0 \times 10^{-5} \text{ M})$ with F⁻ (5.0 × 10^{-3} M) in water, inset: Normalized intensity between the minimum intensity and the maximum intensity. (b) A plot of (I-I_{min})/(I_{max}-I_{min}) vs Log(F⁻]), the calculated detection limit of receptor is 4.75×10^{-5} M.

Fig. S16 (a) Absorbance changes during the titration of **1** $(2.0 \times 10^{-5} \text{ M})$ with H₂PO₄⁻ (5.0 $\times 10^{-3} \text{ M})$ in acetonitrile. Normalized absorbance between the minimum absorbance and the maximum absorbance. (b) A plot of $(A-A_{min})/(A_{max}-A_{min})$ vs Log([H₂PO₄⁻]), the calculated detection limit of receptor is $2.30 \times 10^{-6} \text{ M}$.

Fig. S17 (a) Absorbance changes during the titration of **1** $(2.0 \times 10^{-5} \text{ M})$ with H₂PO₄⁻ (5.0 $\times 10^{-3} \text{ M})$ in acetonitrile. Normalized absorbance between the minimum absorbance and the maximum absorbance. (b) A plot of $(A-A_{min})/(A_{max}-A_{min})$ vs Log([H₂PO₄⁻]), the calculated detection limit of receptor is $1.89 \times 10^{-5} \text{ M}$.

Fig. S18 (a) Luminescence changes during the titration of $1 (2.0 \times 10^{-5} \text{ M})$ with H₂PO₄⁻¹ (5.0 × 10⁻³ M) in acetonitrile, inset: normalized intensity between the minimum intensity and the maximum intensity. (b) A plot of (I-I_{min})/(I_{max}-I_{min}) vs Log(H₂PO₄⁻¹), the calculated detection limit of receptor is $1.99 \times 10^{-6} \text{ M}$.

Fig. S19 (a) Luminescence changes during the titration of $1 (2.0 \times 10^{-5} \text{ M})$ with H₂PO₄⁻¹ (5.0 × 10⁻³ M) in acetonitrile, inset: normalized intensity between the minimum intensity and the maximum intensity. (b) A plot of $(I-I_{min})/(I_{max}-I_{min})$ vs $Log(H_2PO_4^{-1})$, the calculated detection limit of receptor is $1.90 \times 10^{-5} \text{ M}$.

Fig. S20 Changes in time resolved luminescence decay profiles of **1** upon addition of F in its acetonitrile (a) and aqueous (b) solution. Lifetimes values are also given in the inset of the figure.

Fig. S21 ¹H NMR titration of **1** in DMSO- d_6 solution (5.0 × 10⁻³ M) upon addition of F⁻ ion (1.25 × 10⁻¹ M, 0–1 equiv).

Fig. S22 Changes in UV-vis and photoluminescence spectra of **1** in acetonitrile upon addition of $Mn(ClO_4)_2$ (a and c, respectively) and $Co(ClO_4)_2$ (b and d, respectively). The inset shows the change of absorption and emission intensity as a function of the equivalent of Mn^{2+} and Co^{2+} ions added.

Fig. 23 Changes in UV-vis absorption (a and b) and photoluminescence spectra (c and d) of 1 in acetonitrile upon incremental addition of $Ni(ClO_4)_2$. The inset shows the change of absorption and emission intensity as a function of the equivalent of Ni^{2+} ion added.

Fig. S24 Changes in UV-vis absorption (a and c) and photoluminescence spectra (b) of 1 in acetonitrile upon addition of $Cu(ClO_4)_2$. The inset shows the change of absorption and emission intensity as a function of the equivalent of Cu^{2+} ion added.

Fig. S25 Changes in UV-vis absorption (a and c) and photoluminescence (b) spectra of 1 in acetonitrile upon addition of $Zn(ClO_4)_2$ The inset shows the change of absorption and emission intensity as a function of the equivalent of Zn^{2+} ion added.

Fig. S26 Changes in UV-vis absorption (a) and photoluminescence (b) spectra of 1 in acetonitrile upon addition of $Hg(ClO_4)_2$. The inset shows the change of absorption and emission intensity as a function of the equivalent of Hg^{2+} ion added.

Fig. S27 Experimental ESI mass spectra (positive) for 1 in acetonitrile in the presence Fe^{2+} . Inset shows the observed and simulated isotopic distribution patterns of the peak at m/z = 323.55.

Fig. S28 Experimental ESI mass spectra (positive) for 1 in acetonitrile in the presence Ni^{2+} . Inset shows the observed and simulated isotopic distribution patterns of the peak at m/z = 324.03.

Fig. S29 Changes in time resolved luminescence decay profiles of 1 upon addition of Fe^{2+} ion in its acetonitrile (a) and aqueous (b) solution.

Fig. S30 (a) Absorbance changes during the titration of **1** $(2.0 \times 10^{-5} \text{ M})$ with Fe²⁺ $(5.0 \times 10^{-3} \text{ M})$ in acetonitrile. Normalized absorbance between the minimum absorbance and the maximum absorbance. (b) A plot of $(A-A_{min})/(A_{max}-A_{min})$ vs Log([Fe²⁺]), the calculated detection limit of receptor is $6.68 \times 10^{-9} \text{ M}$.

Fig. S31 (a) Luminescence changes during the titration of $1 (2.0 \times 10^{-5} \text{ M})$ with Fe²⁺ (5.0 $\times 10^{-3} \text{ M}$) in acetonitrile, inset: normalized intensity between the minimum intensity and the maximum intensity. (b) A plot of (I-I_{min})/(I_{max}-I_{min}) vs Log(Fe²⁺]), the calculated detection limit of receptor is $6.78 \times 10^{-9} \text{ M}$.

Fig. S32 (a) Absorbance changes during the titration of **1** $(2.0 \times 10^{-5} \text{ M})$ with Fe²⁺ $(5.0 \times 10^{-3} \text{ M})$ in water. Normalized absorbance between the minimum absorbance and the maximum absorbance. (b) A plot of $(A-A_{min})/(A_{max}-A_{min})$ vs Log([Fe²⁺]), the calculated detection limit of receptor is $2.18 \times 10^{-7} \text{ M}$.

Fig. S33 (a) Luminescence changes during the titration of $1 (2.0 \times 10^{-5} \text{ M})$ with Fe²⁺ (5.0 $\times 10^{-3} \text{ M}$) in water, inset: normalized intensity between the minimum intensity and the maximum intensity. (b) A plot of $(I-I_{min})/(I_{max}-I_{min})$ vs Log(Fe²⁺]), the calculated detection limit of receptor is $2.38 \times 10^{-7} \text{ M}$.

Fig. S34 ¹H NMR spectra of **1** in DMSO- d_6 (5.0 × 10⁻³ M) in absence (a) and in presence of 0.5 equiv. of Fe²⁺ ion (b).

Fig. S35 Changes in UV-vis absorption (a-c) and photoluminescence (d-f) spectra of **1** in acetonitrile upon incremental addition of Fe^{2+} in the presence of 1 equiv of F^- ion.

Fig. S36 Changes of SWVs of **1** on incremental addition of F^- (a: 0-2 equiv. and b: 2-10 equiv.) in the presence of 0.5 equiv of Fe^{2+} ion.

Fig. S37 Changes of SWVs of 1 on incremental addition of Fe^{2+} (0-1 equiv.) in the presence of 1.0 equiv of F ion.