Electronic supplementary information

Electron transfer and binding affinities in an
electrochemically controlled ligand transfer system
containing zinc porphyrin and a meso-phenylenediamine
substituent

Hsu-Chun Cheng, a Peter Ping Yu Chen * b and Yuhlong Oliver Su * a

a Department of Applied Chemistry, National Chi Nan University, 1, University Road, Puli, Nantou, 545, Taiwan
b Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Road, Taichung, 402, Taiwan

* To whom correspondence should be addressed.
E-mail: yosu@ncnu.edu.tw ; pychen@dragon.nchu.edu.tw

Supporting information
1. Electrochemical and spectral results ... S2
2. Spectral titration methods ... S11
3. 1H NMR and 13C NMR data ... S12
Electrochemical and spectral results

Fig S1 Cyclic voltammograms of 1.0×10^{-3} M ZnTMP-Ph2-PD in CH2Cl2 containing 0.1 M TBAP in the presence of (A) 0.0–1.0 equiv. and (B) 1.0–2.0 equiv. of HIm. Working electrode: glassy carbon. Scan rate: 0.1 Vs^{-1}.
Fig S2 Spectral changes of 2.0×10^{-4} M PD in CH$_2$Cl$_2$ containing 0.1 M TBAP at various applied potentials (0.00V~1.26V).
Fig S3 Spectral changes of 2.0×10^{-4} M ZnTMP in CH2Cl2 containing 0.1 M TBAP at various applied potentials (0.00V–1.21V).
Fig S4 The absorption spectra of 4.0×10^{-5} M ZnTMP-Ph-PD in presence of 0.75 equiv. in CH_2Cl_2 containing 0.1 M TBAP.
Fig S5 The absorption spectra of 4.0×10^{-5} M ZnTMP-PD in presence of 0.75 equiv. in CH₂Cl₂ containing 0.1 M TBAP.
Fig S6 Spectral changes of 4.0×10^{-5} M ZnTMP-Ph2-PD in CH2Cl2 containing 0.1 M TBAP at $E_{\text{appl.}} = +0.00V \sim +0.83V$
Fig S7 Spectral changes of 4.0×10^{-5} M ZnTMP-Ph$_2$-PD in presence of 0.75 equiv. in CH$_2$Cl$_2$ containing 0.1 M TBAP at $E_{\text{appl.}} = +0.00\text{V} \sim +0.83\text{V}$
Fig. S8 Absorption spectral change of ZnTMP-Ph-PD in the presence of various concentrations of imidazole.

Fig. S9 Absorption spectral change of ZnTMP-Ph\textsubscript{2}-PD in the presence of various concentrations of imidazole.
Fig S10 EPR spectra of N2** and PD** at 298K.
Spectral titration methods

According to the following equation, the binding constants would be estimated by photometric titration.19

\[
\text{ZnP} + qL \rightleftharpoons \text{ZnP}(L)q \\
K_f = \frac{[\text{ZnP}(L)q]}{[\text{ZnP}][L]^q}
\]

\[
\log \left[\frac{(A_x - A_i)}{(A_\infty - A_x)} \right] = q \log[L] + \log K_f
\] \hspace{1cm} (1)

where \([L]\) is concentration of the free-ligand, \(A_x\) is absorbance of zinc porphyrin at various imidazole concentration, \(A_i\) is absorption band in absence of imidazole, \(A_\infty\) is the absorption band in the presence of saturated imidazole, \(q\) is the number of binding ligands, and \(K_f\) is a binding constant.

As for the binding constants between HIm and oxidized zinc porphyrins were calculated from the potential shift of CVs as described in the following method.20

\[
\text{ZnP} \quad \text{--} \text{ne}^- \quad \text{ZnP}^{z+} \quad + \quad pL \rightleftharpoons \text{ZnP}^{z+}(L)p \quad K_{f^+} = \frac{[\text{ZnP}^{z+}(L)p]}{[\text{ZnP}][L]^p}
\]

\[
(E_{1/2})_u = (E_{1/2})_c - (0.059/n) \left[\log \left(\frac{K_f}{K_{f^+}} \right) - \log [L]^{n-q} \right]
\] \hspace{1cm} (2)

where \((E_{1/2})_u\) and \((E_{1/2})_c\) are the half potential of uncomplexed and complexed species, \([L]\) is the ligand concentration, \(p\) and \(q\) are the number of ligation for the neutral and cation radical species, \(K_f\) and \(K_{f^+}\) are the binding constant of \(\text{ZnP}(L)q\) and \(\text{ZnP}^{z+}(L)p\), and \(n\) is the number of electron transfer in the electrochemical reaction.
Figure S11. 1H NMR spectra for 4′-bromo-4-triphenylbenzaldehyde.
Figure S12. 13C NMR spectra for 4′-bromo-4-triphenylbenzaldehyde.
Figure S13. 1H NMR spectra for Zn(Ph$_2$-Br)(mesityl)$_3$P.
Figure S14. $\mathrm{C^{13}}$ NMR spectra for $\text{Zn(Ph}_2\text{-Br)(mesityl)}_3\text{P}$.
Figure S15. 1H NMR spectra for Zn(Ph$_3$-Br)(mesityl)$_3$P.
Figure S16. C^{13} NMR spectra for Zn(Ph_{3-Br})(mesityl)_{3}P.
Figure S17. 1H NMR spectra for ZnTMP-Ph-PD.
Figure S18. 13C NMR spectra for ZnTMP-Ph-PD.
Figure S19. 1H NMR spectra for ZnTMP-Ph$_2$-PD.
Figure S20. C13 NMR spectra for ZnTMP-Ph$_2$-PD.