Copper(II) complexes as a turn-on fluorescent sensor for nitric oxide with intracellular applications

a Department of Chemistry, Jadavpur University, Kolkata 700 032, India, Fax: 91-33-2414-6223, E-mail: m_ali2062@yahoo.com
b Department of Zoology, Kalyani University, Kalyani, 741235, India.

Supporting Information for Publication

Table of contents

1. Fluorometric titration of ligand (L2) with Cu$^{2+}$ in MeOH Fig. S1
2. Kinetics of complexation and subsequent dissociation reactions between Cu$^{2+}$ and L2 Fig. S2
4. UV-visible spectra of isolated complex in MeCN before and after the reaction with nitric oxide. Fig. S3
5. Time-resolved fluorescence decay of L2 and [Cu(L2)Cl]$^+$ Fig. S4
6. Solvent effect on the NO induced fluorescence enhancement by increasing water content in MeCN. Fig S5
7. Kinetic trace of reaction between [CuII(L2)Cl]$^+$ and NO from Na$_2$N$_2$O$_3$ Fig. S6
8. Fe$^{3+}$ Fluorescence quenching, regeneration of FI by NO and displacement of Fe$^{3+}$ by Cu$^{2+}$ from coordination Center Fig. S7

9. 1H-NMR of [CuI(L2)]$^+$ Fig. S8
10. Determination of Dynamic range from the linear dependence of FI on [NO] Fig S9.
11. 1H NMR spectrum of L1 Fig. S10(a)
12. 1H NMR spectrum of L2 Fig. S10(b)
13. 13C-NMR of L2

14. Mass spectrum of L1

15. Mass spectrum of L2

16. Simulated spectrum of L2

17. FT-IR spectrum of L2 in KBr pellet.

18. FT-IR spectrum of Complex
Fig. S1. Fluorometric titration of ligand(L2) with Cu2+ in MeOH.
Fig. S2. Kinetics of complexation and subsequent dissociation reactions between Cu$^{2+}$ and L2.
Fig. S3. UV-visible spectra of complex in acetonitrile before (green) and after the reaction with nitric oxide (blue) in acetonitrile. Conditions are: [Cu(L2)]⁺ = 1.0 mM, [Na₂N₂O₃] = 50 mM.
Fig. S4. Time-resolved fluorescence decay of L2 in absence and in presence of added Cu²⁺ in 9:1 MeCN:H₂O (v/v) in HEPES buffer at pH 7.2 at room temperature (λₑₓ = 370 nm).
Fig S5. Solvent effect on the NO induced fluorescence enhancement by increasing water content in MeCN.
Fig. S6. A Kinetic trace for the reaction between \([\text{Cu}^{II}(L2)\text{Cl}]^+\) and \(\text{Na}_2\text{N}_2\text{O}_3\) in MeCN-H\(_2\)O (9:1, v/v). \([\text{Cu}^{II}(L2)\text{Cl}]^+\) = 50 \(\mu\)M, \([\text{Na}_2\text{N}_2\text{O}_3]\) = 500 \(\mu\)M, temperature 25 \(^\circ\)C.
Fig. S7. Fe$^{3+}$ Fluorescence quenching after adding 1 equivalent Fe$^{3+}$ in 50 μM L2, regeneration of FI by NO and displacement of Fe$^{3+}$ by Cu$^{2+}$ from coordination after adding 1 equivalent Cu$^{2+}$.
Fig. S8. 1H-NMR of [Cu(L2)]$^+$ in CD$_3$CN
Fig S9. Determination of Dynamic range from the linear dependence of FI on [NO].
Fig. S10a. 1H NMR spectrum of L1 in CDCl$_3$, in Bruker 300 MHz instrument.
Fig. S10b. 1H NMR spectrum of L2 in CDCl$_3$, in 500 MHz instrument.
Fig. S10c. 13C-NMR spectrum of Ligand L2 in CDCl$_3$, in 500 MHz instrument.
Fig. S11. HRMS spectrum of L1 in MeCN.
Fig. S11a. HRMS spectrum of L2 in MeCN.
Fig. S11b. Simulated Mass spectrum of L2.
Fig. S12a. FT-IR spectrum of L2 in KBr pellet.
Fig. S12b. FT-IR spectrum of complex 1 in KBr pellet.