Supporting Information For

A Bimodal Multianalyte Simple Molecule Chemosensor for Mg\(^{2+}\), Zn\(^{2+}\), and Co\(^{2+}\)

Yiran Li, Jiang Wu, Xiaojie Jin, Jianwei Wang, Shuai Han, Wenyu Wu, Jun Xu, Weisheng Liu, Xiaojun Yao, and Yu Tang*

Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China

Fax: (+86) 931-891-2582; E-mail: tangyu@lzu.edu.cn

Contents:

Determination of binding constants for Mg\(^{2+}\) and Zn\(^{2+}\)

Determination of binding constants for Co\(^{2+}\)

Scheme S1 Synthetic route to HL.

Fig. S1 The linear dynamic response of HL for Mg\(^{2+}\) and the determination of the detection limit (LOD) for Mg\(^{2+}\) in CH\(_3\)CN.

Fig. S2 Fluorescence Job’s plot for HL with Mg\(^{2+}\) in CH\(_3\)CN.

Fig. S3 ESI-MS spectrum of MgL\(_2\) complex.

Fig. S4 Competition experiments. The black bars represent the addition of an excess of metal ions
to an acetonitrile solution of HL (50 µM) in the presence of Mg^{2+} (25 µM). \(\lambda_{em} = 546 \) nm, [Metal] = 100 µM, [Ca^{2+}] = 500 µM, [K^+] = 500 µM, [Na^+] = 500 µM, [Al^{3+}] = 500 µM.

Fig. S5 Competition experiments. The black bars (A) represent the addition of an excess of metal ions to an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution of HL(50 µM), and the red bars (B) represent the subsequent addition of 50 µM Zn^{2+} ions to the foregoing solution. \(\lambda_{em} = 558 \) nm.

Fig. S6 The linear dynamic response of HL for Zn^{2+} and the determination of the detection limit (LOD) for Zn^{2+} in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution.

Fig. S7 Absorbance Job’s plot for HL with Co^{2+} in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution.

Fig. S8 ESI-MS spectrum of CoL\textsubscript{2} complex.

Fig. S9 The linear fitting (absorbance at 476 nm) of CoL\textsubscript{2}.

Fig. S10 Competition experiments (absorbance at 476 nm). The black bars (A) represent the addition of an excess of metal ions to an acetonitrile/Tris-HCl (50 mM, pH 7.40) (1:1, v/v) solution of HL(50 µM), and the chromatic bars (B) represent the subsequent addition of 25 µM Co^{2+} ions to the foregoing solution.

Fig. S11 The different metal salts toward HL for sensing Mg^{2+}, Zn^{2+}, and Co^{2+}.

Fig. S12 \(^1\)H-NMR spectrum of HL (\(d_6\)-DMSO) at room temperature.

Fig. S13 \(^{13}\)C-NMR spectrum of HL (\(d_6\)-DMSO) at room temperature.

References
Determination of binding constants for Mg\(^{2+}\) and Zn\(^{2+}\).

The association constant and stoichiometry for the formation of the complex were evaluated using the Benesi-Hildebrand (B-H) plot [Eq. (1)].

\[
\frac{1}{F - F_0} = \frac{1}{K} \frac{1}{F_{\text{max}} - F_0} \frac{1}{[M^{n+}]} + \frac{1}{F_{\text{max}} - F_0}
\]

(1)

Binding stoichiometry for the complex formation is confirmed from experimental data. In the case of evaluation of the binding constant from the results of fluorescence titration, a modified B-H equation [Eq. (1)] is used, where \(F_0, F_{\text{max}},\) and \(F\) represent the emission intensity of HL, the maximum emission intensity observed in the presence of Mg\(^{2+}\) or Zn\(^{2+}\), and intensity at a certain concentration of the metal ion, respectively. \(K\) is the association constant (M\(^{-2}\)) and was determined from the slope of the linear plot, and \([M^{n+}]\) is the concentration of the Mg\(^{2+}\) or Zn\(^{2+}\) ion added during titration studies.

Determination of binding constants for Co\(^{2+}\).

Assuming a 1: \(n\) stoichiometry for interaction between L and Co\(^{2+}\), the equilibrium is given by the following equation:

\[
L + n\text{Co}^{2+} \rightleftharpoons \text{LCo}_n^{2+}
\]

(2)

The association constant, \(K\), is therefore expressed as:

\[
K = \frac{[\text{LCo}_n^{2+}]}{[L][\text{Co}^{2+}][n]} = \frac{[\text{LCo}_n^{2+}]}{[[L]_0 - [\text{LCo}_n^{2+}]]([\text{Co}^{2+}]_0 - n[\text{LCo}_n^{2+}])}
\]

(3)

\([\text{LCo}_n^{2+}], [L],\) and \([\text{Co}^{2+}]\) represent the equilibrium concentrations of the complex, free L, and free Co\(^{2+}\), respectively. \([L]_0\) and \([\text{Co}^{2+}]_0\) are the initial concentrations of L and Co\(^{2+}\), respectively.

If \([\text{Co}^{2+}]_0 \gg [\text{LCo}_n^{2+}],\) the equation 3 can be simplified as follows:

\[
K = \frac{[\text{LCo}_n^{2+}]}{[[L]_0 - [\text{LCo}_n^{2+}]]([\text{Co}^{2+}]_0^n)}
\]

(4)

Then it can be transformed to:

\[
K[\text{Co}^{2+}]_0^n = \frac{[\text{LCo}_n^{2+}]}{[L]_0 - [\text{LCo}_n^{2+}]}\]

(5)

Absorbance intensity is given by following equations:
\[
\frac{A - A_{\text{min}}}{A_{\text{max}} - A} = \frac{[\text{LCo}_n^{2+}]}{[\text{LCo}_n^{2+}]_{\text{max}} + [\text{LCo}_n^{2+}]} = \frac{[\text{LCo}_n^{2+}]}{[\text{L}]_0 - [\text{LCo}_n^{2+}]} \quad (6)
\]

\(A_{\text{min}}\) is the absorbance intensity of \(\text{L}\) without cations, \(A\) is the absorbance intensity of \(\text{L}\) obtained with \(\text{Co}^{2+}\), \(A_{\text{max}}\) is the absorbance intensity of \(\text{L}\) in the presence of excess amount of \(\text{Co}^{2+}\). In the presence of excess amount of \(\text{Co}^{2+}\), \([\text{LCo}_n^{2+}]_{\text{max}}\) is almost equal to \([\text{L}]_0\). Using equations 5 and 6, the following equation is given:

\[
\frac{A - A_{\text{min}}}{A_{\text{max}} - A} = K[\text{Co}^{2+}]_0^n \quad (7)
\]

\[
\lg \frac{A - A_{\text{min}}}{A_{\text{max}} - A} = \lg K + n \lg [\text{Co}^{2+}]_0 \quad (8)
\]

When assuming the 2:1 stoichiometry \((n = 0.5)\), equation 1 is obtained.

\[
\lg \frac{A - A_{\text{min}}}{A_{\text{max}} - A} = \lg K + 0.5 \lg [\text{Co}^{2+}] \quad (1)
\]
Scheme S1 Synthetic route to HL

Fig. S1 The linear dynamic response of HL for Mg$^{2+}$ and the determination of the detection limit (LOD) for Mg$^{2+}$ in CH$_3$CN.

Fig. S2 Fluorescence Job’s plot for HL with Mg$^{2+}$ in CH$_3$CN. The total [HL] + [Mg$^{2+}$] = 100 µM.
ESI-MS exhibited the formation of a complex between two deprotonated HL and an Mg$^{2+}$ \([\text{m/z } 661.3057 (2L+Mg^{2+}); \text{calcd for C}_{40}\text{H}_{40}\text{MgN}_{6}\text{O}_{2} \text{m/z 661.09}].\]

The physiologically important cations, such as K$^+$, Na$^+$, Ca$^{2+}$, and Al$^{3+}$, which exist at high concentrations in living cells, have negligible interference for forming the Mg-complex. In addition, Cd$^{2+}$ and Hg$^{2+}$ quenched the fluorescence intensity due to the heavy metal effect. Even though some biologically relevant metal ions, like Zn$^{2+}$, Cu$^{2+}$ and so on, showed various extend responses in the fluorescence intensity, these cations would have little influence, since they exist at low concentrations compared to Mg$^{2+}$. These results suggested HL could be a fluorescence sensor for Mg$^{2+}$ without interference of other physiologically important cations.

Fig. S4 Competition experiments. The black bars represent the addition of an excess of metal ions to an acetonitrile solution of HL (50 µM) in the presence of Mg$^{2+}$ (25 µM). $\lambda_{em} = 546$ nm, [Metal] = 100 µM, [Ca$^{2+}$] = 500 µM, [K$^+$] = 500 µM, [Na$^+$] = 500 µM, [Al$^{3+}$] = 500 µM.
Via monitoring the fluorescence intensity at 558 nm, zinc ions could be distinguished from other metal ions, such as: Na⁺, K⁺, Ag⁺, Fe²⁺, Al³⁺, Ca²⁺, Cr³⁺, Fe³⁺, Cd²⁺, Hg²⁺, Mg²⁺, and Mn²⁺, indicating excellent selectivity for Zn²⁺ over these competing cations. But Ni²⁺, Cu²⁺ and Co²⁺ had some extent the influence on the $F_{558\text{nm}}$ value of the zinc complex, which indicated that Ni²⁺, Cu²⁺, and Co²⁺ could form complexes with HL and thus quenched the fluorescence. There were many other Zn²⁺ sensors, which had exhibited similarly depressed responses due to the competition from these ions. However, these free cations would have little influence in vivo because they exist at a very low concentration.⁴

Fig. S5 Competition experiments. The black bars (A) represent the addition of an excess of metal ions to an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution of HL (50 µM), and the red bars (B) represent the subsequent addition of 50 µM Zn²⁺ ions to the foregoing solution. $\lambda_{\text{em}} = 558$ nm.

Fig. S6 The linear dynamic response of HL for Zn²⁺ and the determination of the detection limit (LOD) for Zn²⁺ in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution.
Fig. S7 Absorbance Job’s plot for HL with Co\(^{2+}\) in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution. The total [HL] + [Co\(^{2+}\)] = 100 µM.

Fig. S8 ESI-MS spectrum of CoL\(_2\) complex.

ESI-MS exhibited the formation of a complex between two deprotonated HL and a Co\(^{2+}\) [m/z 695.2476 (2L+Co\(^{2+}\)); calcd for C\(_{40}\)H\(_{40}\)CoN\(_6\)O\(_2\) m/z 695.25].

Fig. S9 The linear fitting (absorbance at 476 nm) of complexes. \[\log\left(\frac{A - A_{\text{min}}}{A_{\text{max}} - A}\right) = \log K + \log[\text{Co}^{2+}] \] \(K \) is the stability constant, \(A_{\text{min}} \) is absorbance of HL without any cations, \(A \) is absorbance of HL obtained with Co\(^{2+}\), \(A_{\text{max}} \) is absorbance of HL in the presence of excess amount of Co\(^{2+}\).
Fig. S10 Competition experiments (absorbance at 476 nm). The brown bars (A) represent the addition of an excess of metal ions to an acetonitrile/Tris-HCl (50 mM, pH 7.40) (1:1, v/v) solution of HL (50 µM), and the chromatic bars (B) represent the subsequent addition of 25 µM Co^{2+} ions to the foregoing solution.

Fig. S11 The different metal salts toward HL for sensing Mg^{2+}, Zn^{2+}, and Co^{2+}. (a) Fluorescent ($\lambda_{ex} = 470$ nm) spectral changes of HL (1.0 µM) upon titration with MgCl$_2$, Mg(ClO$_4$)$_2$, and Mg(NO$_3$)$_2$ in CH$_3$CN. (b) Fluorescence ($\lambda_{ex} = 470$ nm) responses of HL (50 µM) in the presence of ZnCl$_2$, Zn(ClO$_4$)$_2$, and Zn(NO$_3$)$_2$ in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution. (c) UV/Vis absorption spectra of HL (50 µM) in the presence of CoCl$_2$, Co(ClO$_4$)$_2$, and Co(NO$_3$)$_2$ in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (1:1, v/v) solution.
Fig. S12 1H-NMR spectrum of HL (d_6-DMSO) at room temperature.

Fig. S13 13C-NMR spectrum of HL (d_6-DMSO) at room temperature.
References

