Supporting Information

Exploration of selective recognition of iodide with dipodal sensor: 2,2’- [ethane-1,2-diylbis(iminoethane-1,1-diyl)]diphenol

Kundan Tayadea,b, Judith Galluccic, Hemant Sharmad, Sanjay Attardeb, Rahul Patila, Narinder Singhd*, Anil Kuwaraa*

aSchool of Chemical Sciences, North Maharashtra University, Jalgaon 425 001 (MS) India.
bSchool of Environmental and Earth Sciences, North Maharashtra University, Jalgaon 425 001 (MS) India.
cDepartment of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210 USA
dDepartment of Chemistry, Indian Institute of Technology, Ropar, Rupanagar (Punjab) India

* Corresponding authors. Tel.: +91-257-2257432; fax: +91-257-2257403
E-mail addresses: kuwaras@gmail.com
nsingh@iitrpr.ac.in
Figure S1. IR spectra of receptor 2

Figure S2. 1H-NMR spectra of receptor 2
Figure S3. 13C-NMR spectra of receptor 2

Figure S4. LC-MS spectra of receptor 2 (M+H$^+$)
Fig. S5. Fluorescent titrations of receptor 2 (0.1 mM) with tetrabutylammonium iodide in CH$_3$CN.

Figure S6. A sensing of I$^-$ by receptor 2 (0.1 mM) in the presence of other competing anions.
To determination of binding constant

Linear fitting of the titration profiles using Benesi-Hildebrand methodology (Eq.1), Scatchard methodology (Eq.2) and Connor’s fitting method (Eq.3) based on a 1:1 binding mode results in a good linearity. The binding constant was calculated to be $8.6 \pm 0.01 \times 10^4 \text{M}^{-1}$. We calculated the association constant (K_a) by using the following equation.

$$
\frac{1}{(F-F_0)} = \frac{1}{(F_\infty-F_0)K_a[G]} + \frac{1}{(F_\infty-F_0)} \tag{Eq.1}
$$

$$
\frac{(F-F_0)}{[G]} = (F_\infty-F_0)K_a - (F - F_0)K_a \tag{Eq.2}
$$

Connor’s fitting method was carried out by the following equation as,

$$
K_a [H] + [G] \xrightarrow{\text{[HG]}} [HG] \\
F = k_s[H] + k_p[HG] \\
F_0 = k_s [H]_t \\
[H]_t = [H] + [HG] \\
K_a = \frac{[HG]}{[H][G]} \\
F = \frac{(1 + \frac{k_p}{k_s})}{(1 + K_a[G])} \implies \frac{(1 - \frac{F}{F_0})}{[F]} = K_a(\frac{F}{F_0}) - aK \quad (as \frac{k_p}{k_s} = a) \tag{Eq.3}
$$

Where, F_0 represents the fluorescence intensity in the absence of guest ion (Γ ion), F represents the fluorescence intensity in presence of guest ion, F_∞ represents fluorescence intensity after titration and $[G]$ represents the concentration of guest.
Figure S7. A Benesi-Hildebrand methodology for receptor 2, \((1/\Delta F)\) vs \(1/[G]\), \(K_a = 8.57 \times 10^4 \text{M}^{-1}\).

Figure S8. A Scatchard methodology for receptor 2, \(\Delta F/[G]\) vs \(\Delta F\), \(K_a = 8.62 \times 10^4 \text{M}^{-1}\).
Figure S9. Connor’s fitting method for receptor 2, \((1-F/F_0)/[G] vs F/F_0\), \(K_a = 8.62 \times 10^4\) M\(^{-1}\).

Figure S10. 1:1 Stoichiometry of the host guest relationship realized from the Job’s plot for receptor 2.
Figure S11. LC-MS spectrum of receptor 2.l ion complex \([\text{M+H}^+.\text{(H}_2\text{O})_{0.5}]\)
Figure S12. A change in fluorescence intensity of receptor 2 with time (sec.) upon addition of 3 equiv. of Γ.
Table S1. A comparison of literature reported synthesis with present methodology

<table>
<thead>
<tr>
<th>Group</th>
<th>Synthetic strategy</th>
<th>Detection limit</th>
<th>Fluorescence response</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singh et al.</td>
<td>Multistep tripodial</td>
<td>2.1 µM</td>
<td>quenching</td>
<td>1a</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>Multistep Ag-complex</td>
<td>7.16 µM</td>
<td>quenching</td>
<td>21</td>
</tr>
<tr>
<td>Shang et al.</td>
<td>Capped CdSe nanoparticles</td>
<td>0.28 µM</td>
<td>quenching</td>
<td>22</td>
</tr>
<tr>
<td>Yang et al.</td>
<td>Multistep PVC membrane</td>
<td>0.5 µM</td>
<td>quenching</td>
<td>23</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>Capped Au nanoclusters</td>
<td>118 nM</td>
<td>quenching</td>
<td>24</td>
</tr>
<tr>
<td>Lin et al.</td>
<td>Multistep Hg-complex</td>
<td>0.45 µM</td>
<td>enhancement</td>
<td>25</td>
</tr>
<tr>
<td>Present work</td>
<td>Simple condensation & reduction</td>
<td>1.38 µM</td>
<td>enhancement</td>
<td>-</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2014
Table S2 Crystallographic details for receptor 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Receptor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{18}H_{24}N_{2}O_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>300.39</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Tetragonal</td>
</tr>
<tr>
<td>Space group</td>
<td>P 41212</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 7.5161(6) Å</td>
</tr>
<tr>
<td></td>
<td>c = 29.023(2) Å</td>
</tr>
<tr>
<td>Volume</td>
<td>1639.6(3) Å</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.217 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.080 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>648</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.23 x 0.23 x 0.27 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.799 to 24.988°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-8<=h<=8, -5<=k<=6, -33<=l<=34</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>10916</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>1434 [R(int) = 0.050]</td>
</tr>
<tr>
<td>Completeness to theta = 25.00°</td>
<td>99.7 %</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>1434 / 0 / 109</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.041</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0590, wR2 = 0.1365</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0807, wR2 = 0.1539</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.500 and -0.222 e/Å³</td>
</tr>
</tbody>
</table>

Table S3. Hydrogen bonds for receptor 2 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(8)-H(8A)...O</td>
<td>0.98</td>
<td>2.57</td>
<td>3.156(6)</td>
<td>118.6</td>
</tr>
<tr>
<td>N-H(1N)...O</td>
<td>1.10(5)</td>
<td>2.20(5)</td>
<td>2.993(5)</td>
<td>127(3)</td>
</tr>
<tr>
<td>O-H(1O)...N#2</td>
<td>0.95(7)</td>
<td>1.81(7)</td>
<td>2.760(5)</td>
<td>171(7)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 y,x,-z #2 y,x+1,-z
Table S4: An optimized bond angles, dihedral angles, bond length and energy calculated at B3LYP/ LANL2DZ level.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ligand 2</th>
<th>2.I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dihedral angles (°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N25-C29-C30-N26</td>
<td>61.09</td>
<td>91.88</td>
</tr>
<tr>
<td>C29-C30-N26-C24</td>
<td>-135.57</td>
<td>-169.19</td>
</tr>
<tr>
<td>C5-C4-C23-N25</td>
<td>33.34</td>
<td>69.46</td>
</tr>
<tr>
<td>O21-C3-C4-C23</td>
<td>-0.50</td>
<td>-2.44</td>
</tr>
<tr>
<td>C3-C4-C23-N25</td>
<td>-147.43</td>
<td>-108.38</td>
</tr>
<tr>
<td>O22-C12-C11-C24</td>
<td>-2.34</td>
<td>0.35</td>
</tr>
<tr>
<td>C11-C24-N26-C30</td>
<td>157.50</td>
<td>-179.05</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23-N25-C29</td>
<td>116.22</td>
<td>112.14</td>
</tr>
<tr>
<td>C5-C4-C23</td>
<td>121.38</td>
<td>121.06</td>
</tr>
<tr>
<td>C30-N26-C24</td>
<td>120.29</td>
<td>114.74</td>
</tr>
<tr>
<td>N26-C24-C28</td>
<td>113.49</td>
<td>110.27</td>
</tr>
<tr>
<td>N25-C29-C30</td>
<td>109.24</td>
<td>112.12</td>
</tr>
<tr>
<td>Bond Length (Å)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N25-C29</td>
<td>1.46</td>
<td>1.52</td>
</tr>
<tr>
<td>C30-N26</td>
<td>1.46</td>
<td>1.54</td>
</tr>
<tr>
<td>C24-N26</td>
<td>1.47</td>
<td>1.56</td>
</tr>
<tr>
<td>C23-N25</td>
<td>1.47</td>
<td>1.53</td>
</tr>
<tr>
<td>C12-O22</td>
<td>1.39</td>
<td>1.40</td>
</tr>
<tr>
<td>C3-O21</td>
<td>1.40</td>
<td>1.43</td>
</tr>
<tr>
<td>O22-H45</td>
<td>0.97</td>
<td>1.02</td>
</tr>
<tr>
<td>O21-H44</td>
<td>0.97</td>
<td>1.02</td>
</tr>
<tr>
<td>N25-H42</td>
<td>1.01</td>
<td>1.05</td>
</tr>
<tr>
<td>N26-H43</td>
<td>1.01</td>
<td>1.06</td>
</tr>
<tr>
<td>C23-C27</td>
<td>1.54</td>
<td>1.56</td>
</tr>
<tr>
<td>Energy (a.u.)</td>
<td>-960.28</td>
<td>-959.48</td>
</tr>
</tbody>
</table>