Tunable colors and white-light emission based on a microporous luminescent Zn(II)-MOF

Hongming He, Fuxing Sun, * Tsolmon Borjigin, Nian Zhao and Guangshan Zhu*
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China. Fax: +86-431-85168331; Tel: +86-431-83168887; E-mail: zhugs@jlu.edu.cn.

Fig. S1 The powder X-ray diffraction of JUC-113 at different temperatures.

Fig. S2 N₂ sorption isotherms of the guest-free JUC-113 at 77 K, 1 atm.
Fig. S3 Gas sorption isotherms of the guest-free JUC-113 for CO₂ and CH₄ at 273K.

Table S1 ICP analysis for Ln-encapsulated JUC-113

<table>
<thead>
<tr>
<th>Sample</th>
<th>Element</th>
<th>Concentration</th>
<th>Ln: Zn</th>
<th>Ln percent in weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUC-113 ⊂ Tb1</td>
<td>Zn</td>
<td>14.5</td>
<td>1:100.69</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Tb</td>
<td>0.144</td>
<td>/</td>
<td>0.99</td>
</tr>
<tr>
<td>JUC-113 ⊂ Tb2</td>
<td>Zn</td>
<td>17.6</td>
<td>1:10.43</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Tb</td>
<td>1.687</td>
<td>/</td>
<td>9.59</td>
</tr>
<tr>
<td>JUC-113 ⊂ Eu1</td>
<td>Zn</td>
<td>16.5</td>
<td>1:24.8</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Eu</td>
<td>0.665</td>
<td>/</td>
<td>4.03</td>
</tr>
<tr>
<td>JUC-113 ⊂ Eu2</td>
<td>Zn</td>
<td>15.78</td>
<td>1:16.91</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Eu</td>
<td>0.933</td>
<td>/</td>
<td>5.91</td>
</tr>
<tr>
<td>JUC-113 ⊂ Ln1</td>
<td>Zn</td>
<td>15.6</td>
<td>1:24.8</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Eu</td>
<td>0.164</td>
<td>1:95.12</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>Tb</td>
<td>0.244</td>
<td>1:63.93</td>
<td>1.56</td>
</tr>
<tr>
<td>JUC-113 ⊂ Ln2</td>
<td>Zn</td>
<td>15.27</td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Eu</td>
<td>0.576</td>
<td>1:26.51</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>Tb</td>
<td>0.423</td>
<td>1:36.10</td>
<td>2.77</td>
</tr>
</tbody>
</table>

Table S2 Selected bond lengths (Å) and angles (deg) for JUC-113

<table>
<thead>
<tr>
<th>bond lengths and angles</th>
<th>Zn(1)-O(1)#1</th>
<th>Zn(1)-O(1)#3</th>
<th>Zn(1)-O(1)#4</th>
<th>Zn(1)-O(1)#2</th>
<th>Zn(1)-O(1)#5</th>
<th>Zn(1)-O(1)#6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)-O(1)#1</td>
<td>2.073(3)</td>
<td>2.073(3)</td>
<td>2.073(3)</td>
<td>2.073(3)</td>
<td>2.073(3)</td>
<td>2.073(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Bond</td>
<td>Distance (Å)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn(2)-O(2)#3</td>
<td>1.900(4)</td>
<td>Zn(2)-O(2)#5</td>
<td>1.900(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn(2)-O(2)</td>
<td>1.900(4)</td>
<td>Zn(2)-O(4)</td>
<td>1.979(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)#1-Zn(1)-O(1)#2</td>
<td>94.22(18)</td>
<td>O(1)#1-Zn(1)-O(1)#3</td>
<td>87.2(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)#2-Zn(1)-O(1)#3</td>
<td>84.4(2)</td>
<td>O(1)#1-Zn(1)-O(1)</td>
<td>84.4(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)#2-Zn(1)-O(1)</td>
<td>178.07(19)</td>
<td>O(1)#3-Zn(1)-O(1)</td>
<td>94.22(18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)#1-Zn(1)-O(1)#4</td>
<td>94.22(18)</td>
<td>O(1)#2-Zn(1)-O(1)#4</td>
<td>94.22(18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)#3-Zn(1)-O(1)#4</td>
<td>178.07(19)</td>
<td>O(1)#1-Zn(1)-O(1)#4</td>
<td>87.2(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)#1-Zn(1)-O(1)#5</td>
<td>178.07(19)</td>
<td>O(1)#2-Zn(1)-O(1)#5</td>
<td>87.2(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)#3-Zn(1)-O(1)#5</td>
<td>94.22(18)</td>
<td>O(1)-Zn(1)-O(1)#5</td>
<td>94.22(18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)#4-Zn(1)-O(1)#5</td>
<td>84.4(2)</td>
<td>O(2)#3-Zn(2)-O(2)#5</td>
<td>117.36(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)#3-Zn(2)-O(2)</td>
<td>117.35(7)</td>
<td>O(2)#5-Zn(2)-O(2)</td>
<td>117.35(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)#3-Zn(2)-O(4)</td>
<td>99.46(13)</td>
<td>O(2)#5-Zn(2)-O(4)</td>
<td>99.46(13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-Zn(2)-O(4)</td>
<td>99.46(13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1: -y+1, -x+1, -z+1/2; #2: x, x-y+1, -z+1/2; #3: -y+1, x-y+1, z; #4: -x+y, y, -z+1/2; #5: -x+y, -x+1, z; #6: -x+y, -x, z; #7: -y, x-y, z.