Oxidation mechanism of tetrachloroplatinate(II) by hydrogen peroxide in hydrochloric acid solution

Pieter Murray, a,b Klaus R. Koch a,* and Rudi van Eldik b,*

a Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa *krk@sun.ac.za
b Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany. *rudi.vaneldik@chemie.uni-erlangen.de
Electronic Supplementary Information (ESI)

Figure S1A. Dependence of k_{obs}^0 on the concentration of H_2O_2 for the oxidation of 0.02, 0.03 and 0.04 mM $\text{[PtCl}_4\text{]}^2-$.

Figure S1B. Dependence of k_{obs}^0 on the concentration of H_2O_2 for the oxidation of 0.05, 0.06 and 0.07 mM $\text{[PtCl}_4\text{]}^2-$.
Figure S2. Eyring plots for the oxidation of 0.04 mM $[\text{PtCl}_4]^{2-}$ by 100 mM H_2O_2, and of 1 mM $[\text{PtCl}_4]^{2-}$ by 300 mM H_2O_2.

Figure S3. Plot of $\ln k^0 \text{ (s}^{-1}\text{)}$ as a function of pressure to calculate the activation volume for the zero-order mechanism.
Figure S4. Absorbance vs. time plots at 353 nm and 35 °C for the oxidation of 1 mM [PtCl\textsubscript{4}]2- by various concentrations of H\textsubscript{2}O\textsubscript{2}, [H+], [Cl-] = 1 M.

Figure S5. The dependence of k\textsubscript{obs} on the H\textsubscript{2}O\textsubscript{2} concentration for oxidation of 1, 0.6, and 0.2 mM [PtCl\textsubscript{4}]2-.
Figure S6. Plot of ln$k_{H_2O_2}$ as a function of pressure (MPa) to calculate the activation volume for the pseudo-first order mechanism.

Figure S7. Absorbance vs. time plots at 353 nm and 35 °C for the oxidation of 0.04 mM [PtCl$_4$]$^{2-}$ as a function of chloride concentration. Concentrations of [PtCl$_4$]$^{2-}$ was kept constant at 0.04 mM, [H$_2$O$_2$] at 80 mM and ionic strength 1 M.
Figure S8. Plots of k_{obs}^0 (M s$^{-1}$) as a function of acid and chloride concentration. $[\text{PtCl}_4]^{2-} = 0.04$ mM; $[\text{H}_2\text{O}_2] = 80$ mM and ionic strength = 1 M.