Electronic Supplementary Information

Ivan Pietro Oliveri, Salvatore Failla, Alessia Colombo, Claudia Dragonetti, Stefania Righetto and Santo Di Bella

Contents

I. Additional 1H NMR Spectra ... S2
II. Additional Optical Absorption and Fluorescence Spectra S5
III. DOSY NMR Data and Estimation of the Molecular Mass S8
IV. References .. S9

aDipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy. E-mail: sdibella@unict.it
Fax: +39 095 580138; Tel: +39 095 738 5068

bDipartimento di Ingegneria Industriale, Università di Catania, I-95125 Catania, Italy

cDipartimento di Chimica dell’Università degli Studi di Milano, UdR di Milano dell’INSTM, and

dIstituto di Scienze e Tecnologie Molecolari del CNR, I-20133 Milano, Italy
I. Additional 1H NMR Spectra

Fig. S1. 1H NMR spectra of 1 (b), 2 (c) and 3 (d) in DMSO-d_6. The 1H NMR spectrum of 4 in DMSO-d_6 is reported for comparison (a). The asterisked peaks refer to -CH=CH$_2$ signals of the 4-(undec-10-enoxy) chains.
Fig. S2. Comparison of 1H NMR spectra of 4 (a), 4·BrTBA (b), 1·BrTBA (c) and 2 (d) in DCM-d_2. The asterisked peaks refer to -CH=CH$_2$ signals of the 4-(undec-10-enyloxy) chains of 4. The addition of BrTBA to a DCM-d_2 solution of 4 results in a sizable down-field shift of H$_3$ and H$_5$ signals, in agreement with the deaggregation process and formation of the 4·BrTBA adduct.1
Fig. S3. 1H NMR spectra of 3 in DMSO-d_6 (a) and DCM-d_2 (b).
II. Additional Optical Absorption and Fluorescence Spectra

Fig. S4. UV/vis absorption spectra of 1 (−) and 2 (−) (1.0 × 10⁻⁵ M solutions) in DCM.
Fig. S5. UV/vis absorption and fluorescence ($\lambda_{\text{exc}} = 487$ nm) spectra of 1·BrTBA (−) and 2 (−) (1.0 × 10$^{-5}$ M solutions) in DCM.

Fig. S6. UV/vis absorption and fluorescence ($\lambda_{\text{exc}} = 470$ nm) spectra of 3 (1.0 × 10$^{-5}$ M) in DCM (−), THF (−) and DMSO (−).
Fig. S7. UV/vis absorption and fluorescence ($\lambda_{exc} = 479$ nm) spectra of 1 and 2 (1.0×10^{-5} M solutions) in DMSO.

Fig. S8. UV/vis absorption and fluorescence ($\lambda_{exc} = 428$ nm) spectra of 1 and 2 (1.0×10^{-5} M solutions) in THF.
III. DOSY NMR Data and Estimation of the Molecular Mass

We have used DOSY as independent method to estimate the molecular mass of the species present in solution.2 However, the non-spherical nature of the involved molecules does not allow any straightforward application of the Stokes-Einstein equation, as normally used to estimate the molecular size through the measurement of the diffusion coefficient, D.3 Thus, to achieve reliable molecular masses from DOSY measurements, we have chosen to estimate them by using a known internal reference species thus obtaining the molecular mass by their relative diffusion coefficient.4,5

The molecular mass in solution, m, was simply estimated using Graham’s law of diffusion:

\[D = K \left(\frac{T}{m} \right)^{1/2} \]

where the constant K depends on geometric factors, including the area over which the diffusion is occurring. By assuming a constant temperature and that K is the same for both species in solution, the relative diffusion rate of two species A and B is given by:

\[D_A/D_B = (m_B/m_A)^{1/2} \]

This allows the calculation of an unknown molecular mass by eq. 1:

\[m_B = m_A \left(\frac{D_A}{D_B} \right)^2 \quad (S1) \]

Therefore, the diffusion rate values obtained by DOSY can be used to estimate the molecular mass of a species, by comparison with the actual D value of a known internal reference (e.g., the solvent).4b,5

A representative 2D DOSY plot of 2 is shown in Fig. S9. It is important to note that peaks from molecules with different diffusion rates appear in different positions on the y-axis (diffusion rate) and can easily be assigned to each molecule. Using the cursor in VNMRJ, in the case of 2 in DCM-d\textsubscript{2} maxima were found corresponding to $D = 36.00 \times 10^{-10}$ m2 s$^{-1}$, for the solvent,6 and $D = 9 \times 10^{-10}$ m2 s$^{-1}$, for the complex (Fig. S9). The 1H signal in DCM-d$\textsubscript{2}$ is related to CCl$_2$HD, with a molecular mass of 85.941 Da. Therefore, using these data and applying eq. S1 a mass of 1375.06 Da is calculated, in agreement with the presence of a dimeric species (1464.12 Da) in solution.
Fig. 9. 1H NMR DOSY spectrum of 2 in DCM-d$_2$.

References