Stable Core-modified Calixsmaragdyrins:
Synthesis, Structure and Specific Sensing of Hydrogen Sulfate Ion
Tamal Chatterjee, Avijit Ghosh, Sheri Madhu and Mangalampalli Ravikanth *

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India. E-mail: ravikanth@chem.iitb.ac.in

Table of Contents

1. HR-MS mass spectrum of compound 2a S1
2. HR-MS mass spectrum of compound 2b S2
3. HR-MS mass spectrum of compound 3 S3
4. 1H NMR spectrum of compound 2a S4
5. 1H NMR spectrum of compound 2b S5
6. 1H NMR spectrum of compound 3 S6
7. 13C NMR spectrum of compound 2a S7
8. 13C NMR spectrum of compound 2b S8
9. 13C NMR spectrum of compound 3 S9
10. COSY spectrum of compound 2a S10
11. COSY spectrum of compound 3 S11
12. NOESY spectrum of compound 2b S12
13. NOESY spectrum of compound 3 S13
14. 1H NMR spectrum of compound 2a.2H$^{2+}$ S14
15. COSY spectrum of compound 2a.2H$^{2+}$ S15
16. Absorption spectra of compound 2b upon systematic addition of TFA S16
17. Absorption spectra of compound 2b.2H+2 in the presence of various anions.... S17
18. Absorption spectra of compound 3 upon systematic addition of TFA.... S18
19. Absorption spectra of compound 3.2H+2 in the presence of various anions.... S19
20. Variable temperature 1H NMR spectra of compound 2b S20
21. Square Wave Voltamogram of compound 2b upon titration with HSO4− ion S21
22. Job’s Plot S22
23. HR-MS mass spectrum of compound 2b+ HSO4− S23
24. Table 1: Selected bond lengths [Å] and angles [˚] for compound 2a S24
25. Table 2. Hydrogen bond lengths [Å] and angles [˚] for compound 2a S25
Compound 2a
Mol. Wt. = 544.22
Peak at [M+1]$^+$ = 545.23

Figure S1. HR-MS spectrum of compound 2a
Figure S2. HR-MS spectrum of compound 2b
Figure S3. HR-MS spectrum of compound 3
Figure S4. 1H NMR spectrum of compound 2a recorded in CDCl$_3$ at room temperature.
Figure S5. 1H NMR spectrum of compound 2b recorded in CDCl$_3$ at room temperature.
Figure S6. 1H NMR spectrum of compound 3 recorded in CDCl$_3$ at room temperature.
Figure S7. 13C NMR spectrum of compound 2a recorded in CDCl$_3$ at room temperature.
Figure S8. 13C NMR spectrum of compound 2b recorded in CDCl$_3$ at room temperature.
Figure S9. 13C NMR spectrum of compound 3 recorded in CDCl$_3$ at room temperature.
Figure S10. Partial 1H-1H COSY NMR spectrum of compound 2a recorded in CDCl$_3$ at room temperature.
Figure S11. Partial 1H-1H COSY NMR spectrum of compound 3 recorded in CDCl$_3$ at room temperature.
Figure S12. Partial 1H-1H NOESY NMR spectrum of compound 2b recorded in CDCl$_3$ at room temperature.
Figure S13. 1H-1H NOESY NMR spectrum of compound 3 recorded in CDCl$_3$ at room temperature.
Figure S14. Partial 1H NMR spectrum of compound 2a.2H$^{2+}$ recorded in CDCl$_3$ (★ residual solvent peak) at room temperature.
Figure S15. Partial 1H-1H COSY NMR spectrum of compound 2a.2H$^{2+}$ showing the cross-peak connectivities between inner NH protons and β-pyrrole and β-furan protons recorded in CDCl$_3$ at room temperature.
Figure S16. Change in absorption spectra of compound 2b (1x10^{-5} M) upon systematic addition of TFA solution (0-2 equiv.) in CHCl\textsubscript{3} solution.
Figure S17. Absorption spectra of compound 2b.2H⁺² (1x10⁻⁵ M) in the presence of various anions such as F⁻, Cl⁻, Br⁻, I⁻, ClO₄⁻, CH₃COO⁻, H₂PO₄⁻, HPO₄⁻², HSO₄⁻, SO₄⁻, SCN⁻, S₂O₃⁻, NO₃⁻ and N₃⁻ (excess of equivalents) recorded in CHCl₃ solution.
Figure S18. Change in absorption spectra of compound 3 (1x10^{-5} M) upon systematic addition of TFA solution (0-2 equiv.) in CHCl₃ solution.
Figure S19. Absorption spectra of compound 3.2H⁺² (1x10⁻⁵ M) in the presence of various anions F⁻, Cl⁻, Br⁻, I⁻, ClO₄⁻, CH₃COO⁻, H₂PO₄⁻, HPO₄⁻², HSO₄⁻, SO₄⁻², SCN⁻, S₂O₃⁻, NO₃⁻ and N₃⁻ (excess of equivalents) recorded in CHCl₃ solution.
Figure S20. Variable temperature 1H NMR spectra of compound 2b recorded in the temperature range 20°C to -20°C in CDCl$_3$ (* CDCl$_3$ peak).
Figure S21. Square Wave Voltamogram of compound 2b (1.2x10^{-2} M) upon titration with HSO_{4}^{-} ion (0-20 equiv.) recorded in CH_{2}Cl_{2} containing 0.1 M TBAP as supporting electrolyte at scan rates of 50 mVs^{-1}.
Figure S22. Job’s plot for evolution of binding stoichiometry between Compound 2b and HSO₄⁻ in CHCl₃ solution. Where \(n_A \) is mole fraction of the anion added and \(A \) is absorbance of compound 2b in the presence of anion and \(A_0 \) is the absorbance of compound 2b in the absence of anion which forms 1:1 complex.
Figure S23. HR-MS spectrum of compound 2b+ HSO₄⁻ ion complex
Table S1. Selected bond lengths [Å] and angles [˚] for compound 2a.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Bond length[Å]</th>
<th>Parameters</th>
<th>Bond angle[˚]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)-C(1)</td>
<td>1.3617(17)</td>
<td>C(22)-C(23)-C(1)</td>
<td>111.64(11)</td>
</tr>
<tr>
<td>N(1)-C(4)</td>
<td>1.3744(17)</td>
<td>C(24)-C(23)-C(25)</td>
<td>109.09(13)</td>
</tr>
<tr>
<td>N(2)-C(5)</td>
<td>1.3327(17)</td>
<td>C(8)-C(9)-C(10)</td>
<td>128.57(12)</td>
</tr>
<tr>
<td>N(2)-C(8)</td>
<td>1.3968(16)</td>
<td>C(8)-C(9)-C(26)</td>
<td>117.62(11)</td>
</tr>
<tr>
<td>N(3)-C(15)</td>
<td>1.3929(17)</td>
<td>C(10)-C(9)-C(26)</td>
<td>113.78(11)</td>
</tr>
<tr>
<td>N(3)-C(18)</td>
<td>1.3677(17)</td>
<td>C(13)-C(14)-C(15)</td>
<td>127.82(12)</td>
</tr>
<tr>
<td>N(4)-C(19)</td>
<td>1.3834(18)</td>
<td>C(13)-C(14)-C(32)</td>
<td>114.40(11)</td>
</tr>
<tr>
<td>N(4)-C(22)</td>
<td>1.3327(18)</td>
<td>C(15)-C(14)-C(32)</td>
<td>117.72(12)</td>
</tr>
<tr>
<td>O(1)-C(10)</td>
<td>1.3834(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-C(13)</td>
<td>1.3791(16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-C(23)</td>
<td>1.5186(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.5180(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.4322(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.3920(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S2. Hydrogen bonding parameter for compound 2a [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(3)-H(3N)...O(2)</td>
<td>0.89(2)</td>
<td>2.00(2)</td>
<td>2.8710(16)</td>
<td>165(2)</td>
</tr>
<tr>
<td>N(1)-H(1N)...N(4)</td>
<td>0.87(2)</td>
<td>1.99(2)</td>
<td>2.6235(16)</td>
<td>128.7(18)</td>
</tr>
<tr>
<td>N(1)-H(1N)...O(2)</td>
<td>0.87(2)</td>
<td>2.40(2)</td>
<td>3.0684(16)</td>
<td>134.7(17)</td>
</tr>
<tr>
<td>O(2)-H(1O)...N(2)</td>
<td>0.823(2)</td>
<td>1.910(5)</td>
<td>2.7147(16)</td>
<td>165.6(19)</td>
</tr>
</tbody>
</table>