Peptide-based FeS$_4$ complexes: the zinc ribbon fold is unsurpassed to stabilize both the FeII and FeIII states

Aurélie Jacques, Jean-Marc Latour,* Olivier Sénèque*

a) CNRS, UMR 5249, LCBM, 17 rue des Martyrs, F-38054 Grenoble, France.
b) Univ. Grenoble Alpes, LCBM, 17 rue des Martyrs, F-38054 Grenoble, France.
c) CEA, DSV/iRTSV/CBM, 17 rue des Martyrs, F-38054 Grenoble, France.

olivier.seneque@cea.fr

Supporting Information

Figure S2. CD (dashed line) and MDC (solid line) spectra of reduced (left) and oxidized (right) forms of Clostridium pasteurianum rubredoxin taken from W. A. Eaton and W. Lovenberg, in Iron-Sulfur Proteins, ed. W. Lovenberg, Academic Press, New York, 1973, vol. 2, pp. 131–162.
Figure S3. (A) UV-Vis monitoring of the reduction of FeIII·L$_{ZR}$ under argon. (B) Redox cycling between FeII·L$_{ZR}$ and FeIII·L$_{ZR}$ monitored at 491 nm. Red and black arrows indicate when air and argon was bubbled in the solution.

Figure S4. Absorbance (497 nm) monitoring of the stability of FeIII·L$_{TC}$ (39 µM) under air in HEPES buffer 20 mM pH 7.5, TCEP 750 µM, 298 K.