# **Supporting Information**

## Methanetrisamidines in Coordination Chemistry - Syntheses, Structures and CH-NH Tautomerism

Benjamin Gutschank, Stephan Schulz,\* Dieter Bläser and Christoph Wölper

### **Crystallographic Data for**

 $\{ [C(C(NHi-Pr)_2)_3]^{2+} [NiCl_4]^{2-} \} 2$ 

[C(C(N(*i*-Pr)CuCl)NH*i*-Pr)<sub>2</sub>(C(NH*i*-Pr)<sub>2</sub>)] **3** 

*fac*-[Cr(CO)<sub>3</sub>CH(C(NHPh)NPh)<sub>3</sub>] **4a**.

# ${[C(C(NHi-Pr)_2)_3]^{2+}[NiCl_4]^{2-}} 2$



Table 1: Crystal structure data

| Identification code                      | bg_144m                                                     |
|------------------------------------------|-------------------------------------------------------------|
| Empirical formula                        | $C_{22}H_{48}Cl_4N_6Ni$                                     |
| Formula weight                           | 597.17                                                      |
| Density (calculated)                     | $1.236 \text{ g} \cdot \text{cm}^{-1}$                      |
| <i>F</i> (000)                           | 2544                                                        |
| Temperature                              | 100(1) K                                                    |
| Crystal size                             | $0.18 \times 0.16 \times 0.12 \text{ mm}$                   |
| Crystal colour                           | pale blue                                                   |
| Crystal description                      | block                                                       |
| Wavelength                               | 0.71073 Å                                                   |
| Crystal system                           | cubic                                                       |
| Space group                              | <i>Pa</i> -3                                                |
| Unit cell dimensions                     |                                                             |
| <i>a</i> [Å]                             | 18.5823(18)                                                 |
| <i>b</i> [Å]                             | 18.5823(18)                                                 |
| <i>c</i> [Å]                             | 18.5823(18)                                                 |
| α [°]                                    | 90                                                          |
| β [°]                                    | 90                                                          |
| γ [°]                                    | 90                                                          |
| Volume                                   | 6416.5(11) Å <sup>3</sup>                                   |
| Ζ                                        | 8                                                           |
| Cell measurement reflections used        | 9782                                                        |
| Cell measurement $\theta$ min/max        | 2.19°/29.18°                                                |
| Diffractometer control software          | BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009                       |
| Diffractometer measurement device        | Bruker D8 KAPPA series II with APEX II area detector system |
| Diffractometer measurement method        | Data collection strategy APEX 2/COSMO                       |
| $\theta$ range for data collection       | 1.90°- 29.48°                                               |
| Completeness to $\theta = 29.48^{\circ}$ | 99.0%                                                       |
| Index ranges                             | $-25 \le h \le 25$                                          |
|                                          | $-25 \le k \le 24$                                          |
|                                          | $-22 \le l \le 17$                                          |
| Computing data reduction                 | BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009                       |
| Absorption coefficient                   | 0.958 mm <sup>-1</sup>                                      |
| Absorption correction                    | Semi-empirical from equivalents                             |
| Computation absorption correction        | BRUKER AXS SMART APEX 2 Vers. 3.0-                          |

|                                        | 2009                                                  |
|----------------------------------------|-------------------------------------------------------|
| Max./min. Transmission                 | 0.75/0.64                                             |
| $R_{\rm merg}$ before/after correction | 0.0524/ 0.0427                                        |
| Computing structure solution           | BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009                 |
| Computing structure refinement         | BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4            |
| Refinement method                      | Full-matrix least-squares on $F^2$                    |
| Reflections collected                  | 40041                                                 |
| Independent reflections                | 2961                                                  |
| R <sub>int</sub>                       | 0.0506                                                |
| Data                                   | 2258                                                  |
| Restraints                             | 0                                                     |
| Parameter                              | 100                                                   |
| GooF                                   | 1.137                                                 |
| Weighting details                      | $w = 1/[\sigma^2(F_{obs}^2) + (0.0285P)^2 + 3.5033P]$ |
|                                        | where P = $(F_{obs}^{2} + 2F_{calc}^{2})/3$           |
| $R_1 \left[ I > 2\sigma(I) \right]$    | 0.0296                                                |
| $wR_2 \left[ I > 2\sigma(I) \right]$   | 0.0665                                                |
| $R_1$ [all data]                       | 0.0534                                                |
| $wR_2$ [all data]                      | 0.0813                                                |
| Largest diff. peak and hole            | 0.387/-0.255                                          |

|       | x       | y       | z       | U <sub>eq</sub> |
|-------|---------|---------|---------|-----------------|
| Ni(1) | 7955(1) | 2955(1) | 2045(1) | 23(1)           |
| Cl(1) | 8649(1) | 3649(1) | 1351(1) | 26(1)           |
| Cl(2) | 8639(1) | 2137(1) | 2641(1) | 37(1)           |
| N(1)  | 6876(1) | 243(1)  | 3336(1) | 19(1)           |
| H(1)  | 7121    | -74     | 3006    | 22              |
| N(2)  | 6653(1) | 965(1)  | 2344(1) | 18(1)           |
| H(2)  | 6645    | 1450    | 2137    | 22              |
| C(1)  | 6487(1) | 1487(1) | 3513(1) | 15(1)           |
| C(2)  | 6681(1) | 882(1)  | 3059(1) | 16(1)           |
| C(3)  | 6668(1) | -29(1)  | 4053(1) | 22(1)           |
| H(3)  | 6415    | 366     | 4316    | 26              |
| C(4)  | 7328(1) | -247(1) | 4490(1) | 32(1)           |
| H(4A) | 7590    | -628    | 4234    | 48              |
| H(4B) | 7175    | -426    | 4962    | 48              |
| H(4C) | 7643    | 171     | 4553    | 48              |
| C(5)  | 6143(1) | -658(1) | 3964(1) | 29(1)           |
| H(5A) | 5718    | -496    | 3698    | 44              |
| H(5B) | 5997    | -834    | 4440    | 44              |
| H(5C) | 6379    | -1048   | 3698    | 44              |
| C(6)  | 6733(1) | 384(1)  | 1806(1) | 21(1)           |
| H(6)  | 6535    | -71     | 2013    | 26              |
| C(7)  | 6302(1) | 576(1)  | 1134(1) | 30(1)           |
| H(7A) | 5800    | 664     | 1266    | 46              |
| H(7B) | 6327    | 178     | 789     | 46              |
| H(7C) | 6505    | 1011    | 913     | 46              |
| C(8)  | 7528(1) | 268(1)  | 1625(1) | 31(1)           |
| H(8A) | 7722    | 702     | 1396    | 47              |
| H(8B) | 7576    | -141    | 1296    | 47              |
| H(8C) | 7796    | 169     | 2069    | 47              |

Table 2: Atomic coordinates (  $\times 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>  $\times 10^3$ ) for bg\_144m.  $U_{eq}$  is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|       | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{23}$ | <i>U</i> <sub>13</sub> | <i>U</i> <sub>12</sub> |
|-------|----------|----------|----------|----------|------------------------|------------------------|
| Ni(1) | 23(1)    | 23(1)    | 23(1)    | -1(1)    | -1(1)                  | 1(1)                   |
| Cl(1) | 26(1)    | 26(1)    | 26(1)    | 0(1)     | 0(1)                   | 0(1)                   |
| Cl(2) | 31(1)    | 48(1)    | 32(1)    | 16(1)    | 11(1)                  | 16(1)                  |
| N(1)  | 23(1)    | 17(1)    | 16(1)    | 0(1)     | 1(1)                   | 3(1)                   |
| N(2)  | 22(1)    | 17(1)    | 15(1)    | -1(1)    | 1(1)                   | 0(1)                   |
| C(1)  | 15(1)    | 15(1)    | 15(1)    | -1(1)    | -1(1)                  | 1(1)                   |
| C(2)  | 12(1)    | 17(1)    | 17(1)    | -1(1)    | 1(1)                   | -1(1)                  |
| C(3)  | 29(1)    | 19(1)    | 18(1)    | 2(1)     | 2(1)                   | 2(1)                   |
| C(4)  | 42(1)    | 29(1)    | 24(1)    | 4(1)     | -10(1)                 | 1(1)                   |
| C(5)  | 32(1)    | 23(1)    | 32(1)    | 5(1)     | 4(1)                   | -1(1)                  |
| C(6)  | 26(1)    | 21(1)    | 17(1)    | -4(1)    | 2(1)                   | 0(1)                   |
| C(7)  | 40(1)    | 33(1)    | 19(1)    | -3(1)    | -5(1)                  | -2(1)                  |
| C(8)  | 31(1)    | 35(1)    | 27(1)    | -5(1)    | 9(1)                   | 3(1)                   |

Table 3: Anisotropic displacement parameters (Å<sup>2</sup> × 10<sup>3</sup>) for bg\_144m. The anisotropic displacement factor exponent takes the form:  $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2hka^* b^* U_{12}]$ 

Table 4: Bond lengths [Å] for bg\_144m.

| Ni(1)-Cl(1)   | 2.2345(8)  | N(1)-C(3)   | 1.4764(19) | C(1)-C(2)#1 | 1.4508(14) |
|---------------|------------|-------------|------------|-------------|------------|
| Ni(1)-Cl(2)#1 | 2.2696(5)  | N(2)-C(2)   | 1.3386(18) | C(3)-C(4)   | 1.526(2)   |
| Ni(1)-Cl(2)#2 | 2.2696(5)  | N(2)-C(6)   | 1.4780(19) | C(3)-C(5)   | 1.532(2)   |
| Ni(1)-Cl(2)   | 2.2696(5)  | C(1)-C(2)   | 1.4508(14) | C(6)-C(7)   | 1.526(2)   |
| N(1)-C(2)     | 1.3449(19) | C(1)-C(2)#2 | 1.4508(14) | C(6)-C(8)   | 1.530(2)   |

#1 y+1/2,-z+1/2,-x+1 #2 -z+1,x-1/2,-y+1/2

| Cl(1)-Ni(1)-Cl(2)#1   | 110.194(14) | C(2)#2-C(1)-C(2)#1 | 119.892(12) |
|-----------------------|-------------|--------------------|-------------|
| Cl(1)-Ni(1)-Cl(2)#2   | 110.194(14) | N(2)-C(2)-N(1)     | 119.42(13)  |
| Cl(2)#1-Ni(1)-Cl(2)#2 | 108.739(14) | N(2)-C(2)-C(1)     | 118.68(13)  |
| Cl(1)-Ni(1)-Cl(2)     | 110.195(14) | N(1)-C(2)-C(1)     | 121.89(13)  |
| Cl(2)#1-Ni(1)-Cl(2)   | 108.737(14) | N(1)-C(3)-C(4)     | 111.15(13)  |
| Cl(2)#2-Ni(1)-Cl(2)   | 108.740(14) | N(1)-C(3)-C(5)     | 109.31(13)  |
| C(2)-N(1)-C(3)        | 125.26(12)  | C(4)-C(3)-C(5)     | 111.48(13)  |
| C(2)-N(2)-C(6)        | 125.75(13)  | N(2)-C(6)-C(7)     | 109.30(13)  |
| C(2)-C(1)-C(2)#2      | 119.893(12) | N(2)-C(6)-C(8)     | 110.36(13)  |
| C(2)-C(1)-C(2)#1      | 119.892(12) | C(7)-C(6)-C(8)     | 111.11(14)  |

Table 5: Bond angles [°] for bg\_144m.

#1 y+1/2,-z+1/2,-x+1 #2 -z+1,x-1/2,-y+1/2

### $[C(C(N(i-Pr)CuCl)NHi-Pr)_2(C(NHi-Pr)_2)] \mathbf{3}$



| Identification code                      | bg_185m                                                     |  |  |
|------------------------------------------|-------------------------------------------------------------|--|--|
| Empirical formula                        | $C_{26}H_{54}Cl_2Cu_2N_6O$                                  |  |  |
| Formula weight                           | 664.73                                                      |  |  |
| Density (calculated)                     | $1.257 \text{ g} \cdot \text{cm}^{-1}$                      |  |  |
| <i>F</i> (000)                           | 1408                                                        |  |  |
| Temperature                              | 100(1) K                                                    |  |  |
| Crystal size                             | $0.32 \times 0.23 \times 0.17 \text{ mm}$                   |  |  |
| Crystal colour                           | colourless                                                  |  |  |
| Crystal description                      | block                                                       |  |  |
| Wavelength                               | 0.71073 Å                                                   |  |  |
| Crystal system                           | monoclinic                                                  |  |  |
| Space group                              | $P2_{1}/n$                                                  |  |  |
| Unit cell dimensions                     |                                                             |  |  |
| <i>a</i> [Å]                             | 9.8688(3)                                                   |  |  |
| <i>b</i> [Å]                             | 25.3571(7)                                                  |  |  |
| <i>c</i> [Å]                             | 14.0716(4)                                                  |  |  |
| α [°]                                    | 90                                                          |  |  |
| β [°]                                    | 94.1590(10)                                                 |  |  |
| γ [°]                                    | 90                                                          |  |  |
| Volume                                   | $3512.06(18) \text{ Å}^3$                                   |  |  |
| Ζ                                        | 4                                                           |  |  |
| Cell measurement reflections used        | 23976                                                       |  |  |
| Cell measurement $\theta$ min/max        | 2.22°/28.73°                                                |  |  |
| Diffractometer control software          | BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009                       |  |  |
| Diffractometer measurement device        | Bruker D8 KAPPA series II with APEX II area detector system |  |  |
| Diffractometer measurement method        | Data collection strategy APEX 2/COSMO                       |  |  |
| $\theta$ range for data collection       | 1.61°- 28.73°                                               |  |  |
| Completeness to $\theta = 27.00^{\circ}$ | 98.3%                                                       |  |  |
| Index ranges                             | $-13 \le h \le 13$                                          |  |  |
|                                          | $0 \le k \le 34$                                            |  |  |
|                                          | $0 \le l \le 18$                                            |  |  |
| Computing data reduction                 | BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009                       |  |  |
| Absorption coefficient                   | 1.389 mm <sup>-1</sup>                                      |  |  |

#### Table 1: Crystal structure data

| Absorption correction                  | Semi-empirical from equivalents                        |
|----------------------------------------|--------------------------------------------------------|
| Computation absorption correction      | BRUKER AXS SMART APEX 2 Vers. 3.0-2009                 |
| Max./min. Transmission                 | 0.75/0.60                                              |
| $R_{\rm merg}$ before/after correction | 0.0565/ 0.0376                                         |
| Computing structure solution           | BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009                  |
| Computing structure refinement         | BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4             |
| Refinement method                      | Full-matrix least-squares on $F^2$                     |
| Reflections collected                  | 52732                                                  |
| Independent reflections                | 8868                                                   |
| R <sub>int</sub>                       | 0.0312                                                 |
| Data                                   | 7207                                                   |
| Restraints                             | 0                                                      |
| Parameter                              | 309                                                    |
| GooF                                   | 1.083                                                  |
| Weighting details                      | $w = 1/[\sigma^2 (F_{obs}^2) + (0.0972P)^2 + 3.0578P]$ |
|                                        | where $P = (F_{obs}^{2} + 2F_{calc}^{2})/3$            |
| $R_1 \left[ I > 2\sigma(I) \right]$    | 0.0497                                                 |
| $wR_2 \left[ I > 2\sigma(I) \right]$   | 0.1475                                                 |
| $R_1$ [all data]                       | 0.0625                                                 |
| $wR_2$ [all data]                      | 0.1560                                                 |
| Largest diff. peak and hole            | 1.442/-0.883                                           |

|       | x       | y       | z       |       |
|-------|---------|---------|---------|-------|
| Cu(1) | 4776(1) | 509(1)  | 6834(1) | 22(1) |
| Cu(2) | 6485(1) | 2444(1) | 4891(1) | 19(1) |
| Cl(1) | 5980(1) | -163(1) | 6679(1) | 34(1) |
| Cl(2) | 5724(1) | 2772(1) | 3588(1) | 32(1) |
| N(1)  | 3787(2) | 1134(1) | 7037(2) | 20(1) |
| N(2)  | 3866(2) | 2042(1) | 7276(2) | 22(1) |
| H(2)  | 3280    | 1997    | 7712    | 26    |
| N(3)  | 7345(2) | 2228(1) | 6065(2) | 18(1) |
| N(4)  | 7261(2) | 1856(1) | 7570(2) | 24(1) |
| H(4)  | 7768    | 2115    | 7812    | 29    |
| N(5)  | 6838(2) | 1055(1) | 5383(2) | 28(1) |
| H(5)  | 7491    | 1107    | 5834    | 33    |
| N(6)  | 4565(2) | 1144(1) | 4921(2) | 26(1) |
| H(6)  | 4593    | 830     | 4657    | 31    |
| C(1)  | 5525(2) | 1628(1) | 6313(2) | 16(1) |
| C(2)  | 4338(2) | 1597(1) | 6886(2) | 16(1) |
| C(3)  | 6764(2) | 1914(1) | 6656(2) | 16(1) |
| C(4)  | 5621(3) | 1281(1) | 5524(2) | 19(1) |
| C(5)  | 2562(3) | 1098(1) | 7570(2) | 26(1) |
| H(5A) | 1975    | 1412    | 7418    | 31    |
| C(6)  | 2967(4) | 1092(2) | 8640(3) | 43(1) |
| H(6A) | 3558    | 789     | 8794    | 64    |
| H(6B) | 2149    | 1065    | 8993    | 64    |
| H(6C) | 3452    | 1418    | 8820    | 64    |
| C(7)  | 1776(4) | 602(1)  | 7278(4) | 52(1) |
| H(7A) | 1452    | 626     | 6605    | 78    |
| H(7B) | 998     | 565     | 7668    | 78    |
| H(7C) | 2372    | 294     | 7373    | 78    |
| C(8)  | 4211(3) | 2588(1) | 7062(2) | 26(1) |
| H(8)  | 4931    | 2594    | 6598    | 31    |
| C(9)  | 4740(4) | 2859(1) | 7987(3) | 50(1) |
| H(9A) | 4034    | 2852    | 8442    | 75    |
| H(9B) | 4978    | 3225    | 7853    | 75    |

Table 2: Atomic coordinates (  $\times 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup> × 10<sup>3</sup>) for bg 185m.  $U_{eq}$  is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

| H(9C)  | 5547    | 2672    | 8259    | 75    |
|--------|---------|---------|---------|-------|
| C(10)  | 2946(3) | 2874(1) | 6633(3) | 34(1) |
| H(10A) | 2621    | 2702    | 6037    | 51    |
| H(10B) | 3174    | 3243    | 6504    | 51    |
| H(10C) | 2234    | 2863    | 7083    | 51    |
| C(11)  | 8745(3) | 2418(1) | 6304(2) | 21(1) |
| H(11)  | 8852    | 2499    | 7001    | 25    |
| C(12)  | 9740(3) | 1991(1) | 6090(3) | 36(1) |
| H(12A) | 9545    | 1673    | 6450    | 54    |
| H(12B) | 10666   | 2111    | 6273    | 54    |
| H(12C) | 9655    | 1912    | 5406    | 54    |
| C(13)  | 9003(3) | 2922(1) | 5751(3) | 40(1) |
| H(13A) | 9047    | 2838    | 5074    | 61    |
| H(13B) | 9865    | 3080    | 5997    | 61    |
| H(13C) | 8261    | 3173    | 5826    | 61    |
| C(14)  | 7054(3) | 1408(1) | 8206(2) | 25(1) |
| H(14)  | 6156    | 1241    | 8020    | 30    |
| C(15)  | 8167(3) | 1002(1) | 8135(2) | 35(1) |
| H(15A) | 8129    | 860     | 7486    | 52    |
| H(15B) | 8038    | 715     | 8586    | 52    |
| H(15C) | 9053    | 1168    | 8286    | 52    |
| C(16)  | 7039(4) | 1622(2) | 9217(2) | 39(1) |
| H(16A) | 7912    | 1791    | 9399    | 59    |
| H(16B) | 6889    | 1332    | 9656    | 59    |
| H(16C) | 6307    | 1882    | 9244    | 59    |
| C(17)  | 7192(3) | 735(1)  | 4569(3) | 37(1) |
| H(17)  | 6484    | 456     | 4449    | 44    |
| C(18)  | 8545(4) | 470(2)  | 4863(4) | 64(2) |
| H(18A) | 9237    | 739     | 5015    | 97    |
| H(18B) | 8822    | 250     | 4337    | 97    |
| H(18C) | 8444    | 248     | 5424    | 97    |
| C(19)  | 7249(6) | 1065(2) | 3680(3) | 70(2) |
| H(19A) | 6367    | 1235    | 3533    | 105   |
| H(19B) | 7464    | 839     | 3147    | 105   |
| H(19C) | 7954    | 1336    | 3784    | 105   |

| C(20)  | 3379(4)  | 1466(2) | 4665(3) | 58(1)  |
|--------|----------|---------|---------|--------|
| H(20)  | 3389     | 1788    | 5077    | 69     |
| C(21)  | 3483(5)  | 1629(2) | 3590(4) | 58(1)  |
| H(21A) | 4323     | 1829    | 3529    | 88     |
| H(21B) | 2701     | 1849    | 3380    | 88     |
| H(21C) | 3490     | 1312    | 3194    | 88     |
| C(22)  | 2117(4)  | 1172(3) | 4747(4) | 72(2)  |
| H(22A) | 2145     | 844     | 4381    | 107    |
| H(22B) | 1345     | 1387    | 4498    | 107    |
| H(22C) | 2015     | 1089    | 5418    | 107    |
| O(1)   | 9428(6)  | -590(2) | 7802(4) | 105(2) |
| C(31)  | 10766(5) | -649(2) | 8027(3) | 54(1)  |
| H(31A) | 11301    | -381    | 7706    | 65     |
| H(31B) | 11079    | -1005   | 7856    | 65     |
| C(32)  | 10854(8) | -578(3) | 8987(5) | 94(2)  |
| H(32A) | 10814    | -197    | 9137    | 113    |
| H(32B) | 11728    | -719    | 9268    | 113    |
| C(33)  | 9670(6)  | -866(2) | 9406(4) | 75(1)  |
| H(33A) | 9954     | -1211   | 9684    | 90     |
| H(33B) | 9250     | -651    | 9892    | 90     |
| C(34)  | 8726(6)  | -931(2) | 8502(4) | 75(1)  |
| H(34A) | 8673     | -1303   | 8292    | 90     |
| H(34B) | 7800     | -800    | 8596    | 90     |

|       | $U_{11}$ |        | U <sub>33</sub> | $U_{23}$ | $U_{13}$ | <i>U</i> <sub>12</sub> |
|-------|----------|--------|-----------------|----------|----------|------------------------|
| Cu(1) | 21(1)    | 20(1)  | 25(1)           | -3(1)    | 4(1)     | 2(1)                   |
| Cu(2) | 16(1)    | 26(1)  | 14(1)           | 3(1)     | -2(1)    | -2(1)                  |
| Cl(1) | 31(1)    | 28(1)  | 41(1)           | -11(1)   | -3(1)    | 7(1)                   |
| Cl(2) | 30(1)    | 39(1)  | 26(1)           | 14(1)    | -10(1)   | -11(1)                 |
| N(1)  | 16(1)    | 20(1)  | 23(1)           | -1(1)    | 6(1)     | 0(1)                   |
| N(2)  | 21(1)    | 20(1)  | 26(1)           | -2(1)    | 8(1)     | -1(1)                  |
| N(3)  | 14(1)    | 26(1)  | 14(1)           | 1(1)     | -2(1)    | -3(1)                  |
| N(4)  | 21(1)    | 35(1)  | 15(1)           | 3(1)     | -4(1)    | -10(1)                 |
| N(5)  | 20(1)    | 37(1)  | 27(1)           | -11(1)   | 6(1)     | -3(1)                  |
| N(6)  | 29(1)    | 23(1)  | 24(1)           | -8(1)    | -9(1)    | 2(1)                   |
| C(1)  | 13(1)    | 22(1)  | 12(1)           | -2(1)    | 1(1)     | -1(1)                  |
| C(2)  | 13(1)    | 20(1)  | 15(1)           | -1(1)    | -1(1)    | 0(1)                   |
| C(3)  | 13(1)    | 22(1)  | 14(1)           | -3(1)    | 1(1)     | 0(1)                   |
| C(4)  | 20(1)    | 21(1)  | 15(1)           | 1(1)     | 2(1)     | -4(1)                  |
| C(5)  | 22(1)    | 22(1)  | 37(2)           | 0(1)     | 14(1)    | 0(1)                   |
| C(6)  | 46(2)    | 49(2)  | 36(2)           | 15(2)    | 22(2)    | 19(2)                  |
| C(7)  | 31(2)    | 31(2)  | 97(3)           | -10(2)   | 33(2)    | -11(1)                 |
| C(8)  | 18(1)    | 18(1)  | 40(2)           | -1(1)    | 4(1)     | -1(1)                  |
| C(9)  | 48(2)    | 27(2)  | 70(3)           | -10(2)   | -29(2)   | 0(1)                   |
| C(10) | 28(1)    | 28(2)  | 44(2)           | 7(1)     | -7(1)    | 0(1)                   |
| C(11) | 15(1)    | 27(1)  | 19(1)           | 0(1)     | -3(1)    | -7(1)                  |
| C(12) | 21(1)    | 44(2)  | 41(2)           | -4(1)    | -1(1)    | -1(1)                  |
| C(13) | 29(2)    | 43(2)  | 48(2)           | 11(2)    | -4(1)    | -10(1)                 |
| C(14) | 20(1)    | 38(2)  | 18(1)           | 8(1)     | 0(1)     | -2(1)                  |
| C(15) | 37(2)    | 36(2)  | 31(2)           | 1(1)     | -1(1)    | 4(1)                   |
| C(16) | 46(2)    | 52(2)  | 20(2)           | 7(1)     | 9(1)     | 12(2)                  |
| C(17) | 32(2)    | 40(2)  | 41(2)           | -21(1)   | 19(1)    | -12(1)                 |
| C(18) | 26(2)    | 71(3)  | 97(4)           | -54(3)   | 17(2)    | -4(2)                  |
| C(19) | 108(4)   | 63(3)  | 45(3)           | -16(2)   | 47(3)    | -24(3)                 |
| C(20) | 58(2)    | 38(2)  | 68(3)           | -31(2)   | -49(2)   | 27(2)                  |
| C(21) | 51(2)    | 42(2)  | 78(3)           | 13(2)    | -26(2)   | -4(2)                  |
| C(22) | 21(2)    | 120(4) | 74(3)           | 21(3)    | 8(2)     | 24(2)                  |

Table 3: Anisotropic displacement parameters (Å<sup>2</sup> × 10<sup>3</sup>) for bg\_185m. The anisotropic displacement factor exponent takes the form:  $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2hka^* b^* U_{12}]$ 

| Tuble 4. Dolla I |           | <u>g_105111.</u> |          |             |          |
|------------------|-----------|------------------|----------|-------------|----------|
| Cu(1)-N(1)       | 1.894(2)  | N(5)-C(4)        | 1.359(3) | C(11)-C(13) | 1.527(4) |
| Cu(1)-Cl(1)      | 2.0993(8) | N(5)-C(17)       | 1.466(4) | C(14)-C(15) | 1.514(4) |
| Cu(2)-N(3)       | 1.882(2)  | N(6)-C(4)        | 1.342(3) | C(14)-C(16) | 1.523(4) |
| Cu(2)-Cl(2)      | 2.1025(7) | N(6)-C(20)       | 1.451(4) | C(17)-C(19) | 1.509(6) |
| N(1)-C(2)        | 1.317(3)  | C(1)-C(4)        | 1.424(4) | C(17)-C(18) | 1.526(6) |
| N(1)-C(5)        | 1.472(3)  | C(1)-C(2)        | 1.472(3) | C(20)-C(22) | 1.463(7) |
| N(2)-C(2)        | 1.352(3)  | C(1)-C(3)        | 1.473(3) | C(20)-C(21) | 1.579(7) |
| N(2)-C(8)        | 1.463(3)  | C(5)-C(7)        | 1.519(4) | O(1)-C(31)  | 1.343(7) |
| N(3)-C(3)        | 1.314(3)  | C(5)-C(6)        | 1.529(5) | O(1)-C(34)  | 1.515(8) |
| N(3)-C(11)       | 1.479(3)  | C(8)-C(9)        | 1.529(5) | C(31)-C(32) | 1.359(9) |
| N(4)-C(3)        | 1.350(3)  | C(8)-C(10)       | 1.529(4) | C(32)-C(33) | 1.531(9) |
| N(4)-C(14)       | 1.470(4)  | C(11)-C(12)      | 1.506(4) | C(33)-C(34) | 1.530(8) |

Table 4: Bond lengths [Å] for bg\_185m.

| N(1)-Cu(1)-Cl(1) | 175.95(7)  | N(1)-C(5)-C(7)    | 109.6(2) |
|------------------|------------|-------------------|----------|
| N(3)-Cu(2)-Cl(2) | 171.92(7)  | N(1)-C(5)-C(6)    | 109.7(2) |
| C(2)-N(1)-C(5)   | 120.1(2)   | C(7)-C(5)-C(6)    | 110.5(3) |
| C(2)-N(1)-Cu(1)  | 119.89(17) | N(2)-C(8)-C(9)    | 108.6(3) |
| C(5)-N(1)-Cu(1)  | 118.39(17) | N(2)-C(8)-C(10)   | 109.6(2) |
| C(2)-N(2)-C(8)   | 127.9(2)   | C(9)-C(8)-C(10)   | 110.0(3) |
| C(3)-N(3)-C(11)  | 119.8(2)   | N(3)-C(11)-C(12)  | 109.4(2) |
| C(3)-N(3)-Cu(2)  | 122.84(17) | N(3)-C(11)-C(13)  | 110.1(2) |
| C(11)-N(3)-Cu(2) | 117.37(17) | C(12)-C(11)-C(13) | 111.4(3) |
| C(3)-N(4)-C(14)  | 127.4(2)   | N(4)-C(14)-C(15)  | 110.6(2) |
| C(4)-N(5)-C(17)  | 127.6(3)   | N(4)-C(14)-C(16)  | 107.7(3) |
| C(4)-N(6)-C(20)  | 125.8(2)   | C(15)-C(14)-C(16) | 111.2(3) |
| C(4)-C(1)-C(2)   | 119.7(2)   | N(5)-C(17)-C(19)  | 111.5(3) |
| C(4)-C(1)-C(3)   | 117.4(2)   | N(5)-C(17)-C(18)  | 106.6(3) |
| C(2)-C(1)-C(3)   | 121.4(2)   | C(19)-C(17)-C(18) | 112.6(4) |
| N(1)-C(2)-N(2)   | 121.3(2)   | N(6)-C(20)-C(22)  | 111.6(4) |
| N(1)-C(2)-C(1)   | 119.3(2)   | N(6)-C(20)-C(21)  | 106.1(4) |
| N(2)-C(2)-C(1)   | 119.3(2)   | C(22)-C(20)-C(21) | 108.9(3) |
| N(3)-C(3)-N(4)   | 121.6(2)   | C(31)-O(1)-C(34)  | 105.7(5) |
| N(3)-C(3)-C(1)   | 118.8(2)   | O(1)-C(31)-C(32)  | 102.1(5) |
| N(4)-C(3)-C(1)   | 119.6(2)   | C(31)-C(32)-C(33) | 108.9(6) |
| N(6)-C(4)-N(5)   | 116.9(2)   | C(34)-C(33)-C(32) | 99.6(5)  |
| N(6)-C(4)-C(1)   | 124.2(2)   | O(1)-C(34)-C(33)  | 101.5(5) |
| N(5)-C(4)-C(1)   | 118.9(2)   |                   |          |
|                  |            |                   |          |

Table 5: Bond angles [°] for bg\_185m.

### fac-[Cr(CO)<sub>3</sub>CH(C(NHPh)NPh)<sub>3</sub>] 4a.





| Identification code                       | bg_213x                                                     |
|-------------------------------------------|-------------------------------------------------------------|
| Empirical formula                         | $C_{47}H_{42}CrN_6O_4$                                      |
| Formula weight                            | 806.86                                                      |
| Density (calculated)                      | $1.316 \text{ g} \cdot \text{cm}^{-1}$                      |
| <i>F</i> (000)                            | 1688                                                        |
| Temperature                               | 180(1) K                                                    |
| Crystal size                              | $0.150 \times 0.120 \times 0.030 \text{ mm}$                |
| Crystal colour                            | orange                                                      |
| Crystal description                       | plate                                                       |
| Wavelength                                | 0.71073 Å                                                   |
| Crystal system                            | orthorhombic                                                |
| Space group                               | Pna2 <sub>1</sub>                                           |
| Unit cell dimensions                      |                                                             |
| <i>a</i> [Å]                              | 24.6646(14)                                                 |
| <i>b</i> [Å]                              | 14.2926(7)                                                  |
| <i>c</i> [Å]                              | 11.5541(7)                                                  |
| α [°]                                     | 90                                                          |
| β [°]                                     | 90                                                          |
| γ [°]                                     | 90                                                          |
| Volume                                    | $4073.1(4) \text{ Å}^3$                                     |
| Ζ                                         | 4                                                           |
| Cell measurement reflections used         | 6062                                                        |
| Cell measurement $\theta$ min/max         | 2.42°/24.73°                                                |
| Diffractometer control software           | BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009                       |
| Diffractometer measurement device         | Bruker D8 KAPPA series II with APEX II area detector system |
| Diffractometer measurement method         | Data collection strategy APEX 2/COSMO                       |
| $\theta$ range for data collection        | 1.651°- 27.169°                                             |
| Completeness to $\theta = 25.242^{\circ}$ | 99.5%                                                       |
| Index ranges                              | $-31 \le h \le 31$                                          |
|                                           | $-18 \le k \le 12$                                          |
|                                           | $-14 \leq l \leq 14$                                        |
| Computing data reduction                  | BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009                       |
| Absorption coefficient                    | 0.333 mm <sup>-1</sup>                                      |

#### Table 1: Crystal structure data

| Absorption correction                  | Semi-empirical from equivalents                          |
|----------------------------------------|----------------------------------------------------------|
| Computation absorption correction      | BRUKER AXS SMART APEX 2 Vers. 3.0-2009                   |
| Max./min. Transmission                 | 0.75/0.66                                                |
| $R_{\rm merg}$ before/after correction | 0.0672/ 0.0615                                           |
| Computing structure solution           | BRUKER D8 KAPPA APEX 2 Vers. 3.0-2009                    |
| Computing structure refinement         | SHELXL-2013 (Sheldrick, 2013)                            |
| Refinement method                      | Full-matrix least-squares on $F^2$                       |
| Reflections collected                  | 32293                                                    |
| Independent reflections                | 8839                                                     |
| R <sub>int</sub>                       | 0.0607                                                   |
| Data                                   | 6082                                                     |
| Restraints                             | 1                                                        |
| Parameter                              | 523                                                      |
| GooF                                   | 0.999                                                    |
| Weighting details                      | $w = 1/[\sigma^2 (F_{\rm obs}^2) + (0.0401 \text{P})^2]$ |
|                                        | where P = $(F_{obs}^{2} + 2F_{calc}^{2})/3$              |
| $R_1 \left[ I > 2\sigma(I) \right]$    | 0.0441                                                   |
| $wR_2 \left[I > 2\sigma(I)\right]$     | 0.0826                                                   |
| $R_1$ [all data]                       | 0.0859                                                   |
| wR <sub>2</sub> [all data]             | 0.0949                                                   |
| Absolute structure parameter           | 0.015(12)                                                |
| Largest diff. peak and hole            | 0.305/-0.355                                             |

| $10^{\circ}) 101^{\circ} 0g_2 13X.$ | Ceq 13 defined as of | ie unite of the trace | of the ofthogonali. |       |
|-------------------------------------|----------------------|-----------------------|---------------------|-------|
|                                     | x                    | <i>y</i>              | z                   | Ueq   |
| Cr(1)                               | 2522(1)              | 5727(1)               | 266(1)              | 18(1) |
| N(1)                                | 3652(1)              | 7459(2)               | 2158(3)             | 29(1) |
| H(1)                                | 3531                 | 7392                  | 2887                | 35    |
| N(2)                                | 2929(1)              | 6504(2)               | 1587(3)             | 18(1) |
| N(3)                                | 2878(1)              | 8541(2)               | -882(3)             | 23(1) |
| H(3)                                | 2623                 | 8680                  | -1412               | 27    |
| N(4)                                | 2500(1)              | 7051(2)               | -584(3)             | 19(1) |
| N(5)                                | 4101(1)              | 6500(2)               | -1095(3)            | 22(1) |
| H(5)                                | 4364                 | 6087                  | -926                | 26    |
| N(6)                                | 3320(1)              | 5674(2)               | -470(3)             | 18(1) |
| O(1)                                | 2023(1)              | 4519(2)               | -1554(3)            | 50(1) |
| O(2)                                | 2464(1)              | 3913(2)               | 1548(3)             | 36(1) |
| O(3)                                | 1371(1)              | 5888(2)               | 1055(3)             | 48(1) |
| C(1)                                | 3411(1)              | 7297(2)               | 70(3)               | 17(1) |
| H(1A)                               | 3684                 | 7774                  | 11                  | 21    |
| C(2)                                | 3325(2)              | 7065(3)               | 1336(4)             | 19(1) |
| C(3)                                | 2888(2)              | 7651(3)               | -473(3)             | 18(1) |
| C(4)                                | 3607(2)              | 6424(3)               | -557(3)             | 18(1) |
| C(5)                                | 2230(2)              | 5022(3)               | -887(4)             | 28(1) |
| C(6)                                | 2518(2)              | 4634(3)               | 1054(4)             | 23(1) |
| C(7)                                | 1826(2)              | 5861(3)               | 775(4)              | 27(1) |
| C(11)                               | 4145(2)              | 7961(3)               | 2071(4)             | 24(1) |
| C(12)                               | 4538(2)              | 7751(3)               | 1259(4)             | 33(1) |
| H(12)                               | 4485                 | 7248                  | 734                 | 40    |
| C(13)                               | 5009(2)              | 8274(4)               | 1220(4)             | 42(1) |
| H(13)                               | 5269                 | 8148                  | 635                 | 50    |
| C(14)                               | 5102(2)              | 8965(4)               | 2002(5)             | 44(1) |
| H(14)                               | 5430                 | 9314                  | 1966                | 53    |
| C(15)                               | 4723(2)              | 9158(3)               | 2852(4)             | 41(1) |
| H(15)                               | 4790                 | 9635                  | 3405                | 49    |
| C(16)                               | 4241(2)              | 8658(3)               | 2885(4)             | 32(1) |
| H(16)                               | 3980                 | 8786                  | 3468                | 38    |
| C(21)                               | 2844(2)              | 6337(3)               | 2801(4)             | 21(1) |
|                                     |                      |                       |                     |       |

Table 2: Atomic coordinates (  $\times 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>  $\times 10^3$ ) for bg 213x.  $U_{eq}$  is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

| C(22) | 2559(2) | 6983(3)  | 3460(4)  | 29(1) |
|-------|---------|----------|----------|-------|
| H(22) | 2406    | 7520     | 3104     | 35    |
| C(23) | 2502(2) | 6844(3)  | 4638(4)  | 36(1) |
| H(23) | 2309    | 7290     | 5088     | 43    |
| C(24) | 2716(2) | 6059(3)  | 5164(4)  | 34(1) |
| H(24) | 2680    | 5971     | 5975     | 40    |
| C(25) | 2988(2) | 5414(3)  | 4496(4)  | 34(1) |
| H(25) | 3127    | 4865     | 4851     | 40    |
| C(26) | 3057(2) | 5539(3)  | 3324(4)  | 25(1) |
| H(26) | 3249    | 5090     | 2879     | 30    |
| C(31) | 3233(2) | 9279(3)  | -546(4)  | 21(1) |
| C(32) | 3455(2) | 9855(3)  | -1373(4) | 29(1) |
| H(32) | 3373    | 9755     | -2165    | 35    |
| C(33) | 3792(2) | 10578(3) | -1059(4) | 36(1) |
| H(33) | 3934    | 10987    | -1631    | 43    |
| C(34) | 3919(2) | 10712(3) | 92(5)    | 40(1) |
| H(34) | 4172    | 11182    | 305      | 48    |
| C(35) | 3687(2) | 10158(3) | 930(5)   | 39(1) |
| H(35) | 3766    | 10268    | 1723     | 46    |
| C(36) | 3335(2) | 9442(3)  | 618(4)   | 30(1) |
| H(36) | 3167    | 9068     | 1195     | 36    |
| C(41) | 2011(2) | 7368(3)  | -1125(4) | 19(1) |
| C(42) | 1911(2) | 7167(3)  | -2270(4) | 32(1) |
| H(42) | 2156    | 6789     | -2698    | 39    |
| C(43) | 1454(2) | 7518(3)  | -2795(4) | 38(1) |
| H(43) | 1390    | 7379     | -3587    | 46    |
| C(44) | 1087(2) | 8058(3)  | -2199(4) | 34(1) |
| H(44) | 780     | 8310     | -2585    | 40    |
| C(45) | 1175(2) | 8226(3)  | -1050(5) | 39(1) |
| H(45) | 917     | 8574     | -617     | 47    |
| C(46) | 1638(2) | 7892(3)  | -512(4)  | 32(1) |
| H(46) | 1700    | 8027     | 281      | 38    |
| C(51) | 4208(2) | 7244(3)  | -1894(4) | 23(1) |
| C(52) | 3814(2) | 7549(3)  | -2647(4) | 32(1) |
| H(52) | 3462    | 7281     | -2612    | 39    |

| C(53)  | 3926(2) | 8233(3) | -3457(5) | 43(1)  |
|--------|---------|---------|----------|--------|
| H(53)  | 3651    | 8460    | -3958    | 51     |
| C(54)  | 4444(2) | 8601(3) | -3529(5) | 53(2)  |
| H(54)  | 4530    | 9047    | -4109    | 64     |
| C(55)  | 4838(2) | 8301(4) | -2770(5) | 52(2)  |
| H(55)  | 5191    | 8567    | -2807    | 62     |
| C(56)  | 4721(2) | 7630(3) | -1938(4) | 37(1)  |
| H(56)  | 4991    | 7429    | -1405    | 45     |
| C(61)  | 3494(2) | 4855(3) | -1082(4) | 21(1)  |
| C(62)  | 3557(2) | 4872(3) | -2276(4) | 28(1)  |
| H(62)  | 3486    | 5429    | -2697    | 34     |
| C(63)  | 3718(2) | 4074(3) | -2851(4) | 35(1)  |
| H(63)  | 3770    | 4094    | -3665    | 42     |
| C(64)  | 3809(2) | 3246(4) | -2261(5) | 39(1)  |
| H(64)  | 3914    | 2697    | -2666    | 47     |
| C(65)  | 3740(2) | 3234(3) | -1081(5) | 40(1)  |
| H(65)  | 3801    | 2669    | -668     | 47     |
| C(66)  | 3591(2) | 4036(3) | -487(4)  | 29(1)  |
| H(66)  | 3550    | 4019    | 330      | 35     |
| O(4)   | 4990(1) | 5146(2) | -922(3)  | 48(1)  |
| C(71)  | 4982(2) | 5001(4) | 288(5)   | 54(1)  |
| H(71A) | 5183    | 5504    | 689      | 65     |
| H(71B) | 4605    | 4993    | 577      | 65     |
| C(72)  | 5240(4) | 4099(5) | 495(7)   | 135(4) |
| H(72A) | 4985    | 3672    | 892      | 162    |
| H(72B) | 5562    | 4180    | 997      | 162    |
| C(73)  | 5388(4) | 3701(5) | -559(7)  | 100(3) |
| H(73A) | 5786    | 3615    | -579     | 120    |
| H(73B) | 5213    | 3084    | -667     | 120    |
| C(74)  | 5222(2) | 4358(4) | -1481(6) | 61(2)  |
| H(74A) | 4954    | 4056    | -1997    | 73     |
| H(74B) | 5537    | 4556    | -1950    | 73     |

|                                       |                |       | $U_{22}$ | $U_{22}$ |        | Un     |
|---------------------------------------|----------------|-------|----------|----------|--------|--------|
| Cr(1)                                 | 19(1)          | 16(1) | 21(1)    | 2(1)     | 0(1)   | -2(1)  |
| $\frac{\mathrm{O}(1)}{\mathrm{N}(1)}$ | 31(2)          | 39(2) | 18(2)    | 2(1)     | -4(2)  | -2(1)  |
| N(2)                                  | 20(2)          | 16(2) | 18(2)    | -1(1)    | 0(1)   | -1(1)  |
| N(2)                                  | 26(2)          | 18(2) | 10(2)    | 5(2)     | -5(2)  | -1(1)  |
| N(3)                                  | 17(2)          | 10(2) | 18(2)    | 0(1)     | -3(2)  | -2(2)  |
| N(4)                                  | 17(2)          | 21(2) | 10(2)    | 5(2)     | 0(2)   | 0(2)   |
| N(3)                                  | 10(2)          | 17(2) | 33(2)    | 3(2)     | 2(2)   | 4(1)   |
| $\mathbf{N}(0)$                       | 22(2)<br>58(2) | 15(2) | 20(2)    | 1(2)     | 0(2)   | 0(1)   |
| O(1)                                  | 38(2)          | 45(2) | 47(2)    | -15(2)   | -17(2) | -10(2) |
| O(2)                                  | 44(2)          | 24(2) | 40(2)    | 10(2)    | 4(2)   | -3(2)  |
| O(3)                                  | 21(2)          | 63(2) | 59(2)    | 20(2)    | 11(2)  | 0(2)   |
| C(1)                                  | 18(2)          | 16(2) | 18(2)    | 1(2)     | 3(2)   | -4(2)  |
| C(2)                                  | 18(2)          | 17(2) | 22(2)    | 2(2)     | 1(2)   | 3(2)   |
| C(3)                                  | 24(2)          | 18(2) | 13(2)    | -1(2)    | 3(2)   | 3(2)   |
| C(4)                                  | 17(2)          | 18(2) | 18(2)    | 1(2)     | 0(2)   | 2(2)   |
| C(5)                                  | 28(2)          | 26(2) | 31(3)    | 6(2)     | -3(2)  | -3(2)  |
| C(6)                                  | 22(2)          | 23(2) | 24(2)    | -2(2)    | 2(2)   | -2(2)  |
| C(7)                                  | 29(3)          | 24(2) | 28(3)    | 6(2)     | -4(2)  | 0(2)   |
| C(11)                                 | 22(2)          | 23(2) | 25(3)    | 5(2)     | -6(2)  | -2(2)  |
| C(12)                                 | 27(2)          | 34(3) | 37(3)    | -3(2)    | -6(2)  | 1(2)   |
| C(13)                                 | 23(2)          | 65(4) | 37(3)    | -1(3)    | 3(2)   | -6(2)  |
| C(14)                                 | 27(2)          | 52(3) | 53(4)    | 9(3)     | -8(3)  | -13(2) |
| C(15)                                 | 43(3)          | 36(3) | 45(3)    | -1(2)    | -13(3) | -10(2) |
| C(16)                                 | 29(2)          | 35(3) | 31(3)    | -4(2)    | -6(2)  | -3(2)  |
| C(21)                                 | 17(2)          | 23(2) | 22(2)    | 1(2)     | 0(2)   | -5(2)  |
| C(22)                                 | 34(2)          | 29(2) | 24(2)    | 0(2)     | 4(2)   | 6(2)   |
| C(23)                                 | 36(3)          | 42(3) | 30(3)    | -4(2)    | 7(2)   | 6(2)   |
| C(24)                                 | 34(2)          | 45(3) | 21(3)    | 5(3)     | -2(2)  | -6(2)  |
| C(25)                                 | 39(3)          | 32(3) | 29(3)    | 8(2)     | -6(2)  | 0(2)   |
| C(26)                                 | 25(2)          | 23(2) | 27(3)    | -1(2)    | -1(2)  | 4(2)   |
| C(31)                                 | 23(2)          | 10(2) | 29(3)    | 1(2)     | 0(2)   | 2(2)   |
| C(32)                                 | 36(3)          | 21(2) | 29(3)    | -1(2)    | 3(2)   | -4(2)  |
| C(33)                                 | 41(3)          | 27(3) | 40(3)    | 0(2)     | 9(2)   | -8(2)  |
| C(34)                                 | 33(2)          | 24(2) | 62(4)    | -6(3)    | -7(3)  | -5(2)  |

Table 3: Anisotropic displacement parameters (Å<sup>2</sup> × 10<sup>3</sup>) for bg\_213x. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$ 

| C(35) | 53(3)   | 24(2)  | 40(3) | -1(2)  | -19(3) | 5(2)   |
|-------|---------|--------|-------|--------|--------|--------|
| C(36) | 41(3)   | 19(2)  | 30(3) | 3(2)   | -5(2)  | 2(2)   |
| C(41) | 19(2)   | 17(2)  | 21(2) | 3(2)   | 0(2)   | -3(2)  |
| C(42) | 37(3)   | 38(3)  | 21(3) | -1(2)  | 1(2)   | 4(2)   |
| C(43) | 45(3)   | 43(3)  | 27(3) | 2(2)   | -14(2) | 0(2)   |
| C(44) | 21(2)   | 37(3)  | 42(3) | 7(2)   | -11(2) | 0(2)   |
| C(45) | 30(3)   | 46(3)  | 41(3) | -10(3) | -5(2)  | 13(2)  |
| C(46) | 27(2)   | 39(3)  | 28(3) | -8(2)  | -4(2)  | 8(2)   |
| C(51) | 28(2)   | 18(2)  | 24(3) | -2(2)  | 11(2)  | 1(2)   |
| C(52) | 33(3)   | 30(3)  | 34(3) | 2(2)   | 12(2)  | 4(2)   |
| C(53) | 53(3)   | 38(3)  | 37(3) | 7(3)   | 9(3)   | 14(3)  |
| C(54) | 80(4)   | 34(3)  | 44(3) | 12(3)  | 29(3)  | 1(3)   |
| C(55) | 59(3)   | 44(3)  | 51(4) | -2(3)  | 29(3)  | -19(3) |
| C(56) | 33(3)   | 36(3)  | 43(3) | -1(2)  | 13(2)  | -6(2)  |
| C(61) | 19(2)   | 17(2)  | 27(3) | -4(2)  | 1(2)   | -2(2)  |
| C(62) | 38(3)   | 25(2)  | 22(3) | -4(2)  | -2(2)  | -1(2)  |
| C(63) | 44(3)   | 35(3)  | 25(3) | -8(2)  | 6(2)   | -6(2)  |
| C(64) | 46(3)   | 25(2)  | 47(3) | -15(2) | 8(3)   | 1(2)   |
| C(65) | 52(3)   | 23(2)  | 44(3) | 0(2)   | 10(3)  | 8(2)   |
| C(66) | 38(3)   | 22(2)  | 27(3) | -2(2)  | 7(2)   | 1(2)   |
| O(4)  | 52(2)   | 44(2)  | 49(2) | 9(2)   | 2(2)   | 17(2)  |
| C(71) | 54(3)   | 62(3)  | 46(4) | -4(4)  | -7(3)  | 5(3)   |
| C(72) | 235(11) | 101(6) | 69(7) | 27(5)  | -10(6) | 99(7)  |
| C(73) | 144(7)  | 67(5)  | 90(6) | 11(4)  | 17(5)  | 53(5)  |
| C(74) | 64(4)   | 64(4)  | 55(4) | -2(3)  | 9(3)   | 15(3)  |

|            | 8        | - 6         |          |             |           |
|------------|----------|-------------|----------|-------------|-----------|
| Cr(1)-C(6) | 1.808(4) | C(1)-C(3)   | 1.520(5) | C(42)-C(43) | 1.374(6)  |
| Cr(1)-C(5) | 1.820(5) | C(1)-C(4)   | 1.523(5) | C(43)-C(44) | 1.376(7)  |
| Cr(1)-C(7) | 1.823(4) | C(11)-C(12) | 1.381(6) | C(44)-C(45) | 1.367(6)  |
| Cr(1)-N(4) | 2.133(3) | C(11)-C(16) | 1.391(6) | C(45)-C(46) | 1.384(6)  |
| Cr(1)-N(2) | 2.138(3) | C(12)-C(13) | 1.382(6) | C(51)-C(52) | 1.377(6)  |
| Cr(1)-N(6) | 2.147(3) | C(13)-C(14) | 1.358(7) | C(51)-C(56) | 1.381(6)  |
| N(1)-C(2)  | 1.368(5) | C(14)-C(15) | 1.385(7) | C(52)-C(53) | 1.381(6)  |
| N(1)-C(11) | 1.415(5) | C(15)-C(16) | 1.388(6) | C(53)-C(54) | 1.383(7)  |
| N(2)-C(2)  | 1.296(5) | C(21)-C(22) | 1.387(6) | C(54)-C(55) | 1.379(7)  |
| N(2)-C(21) | 1.438(5) | C(21)-C(26) | 1.393(6) | C(55)-C(56) | 1.388(7)  |
| N(3)-C(3)  | 1.358(5) | C(22)-C(23) | 1.383(6) | C(61)-C(66) | 1.379(6)  |
| N(3)-C(31) | 1.424(5) | C(23)-C(24) | 1.381(6) | C(61)-C(62) | 1.389(6)  |
| N(4)-C(3)  | 1.290(5) | C(24)-C(25) | 1.378(6) | C(62)-C(63) | 1.378(6)  |
| N(4)-C(41) | 1.433(5) | C(25)-C(26) | 1.377(6) | C(63)-C(64) | 1.384(7)  |
| N(5)-C(4)  | 1.370(5) | C(31)-C(32) | 1.375(6) | C(64)-C(65) | 1.374(6)  |
| N(5)-C(51) | 1.433(5) | C(31)-C(36) | 1.388(6) | C(65)-C(66) | 1.386(6)  |
| N(6)-C(4)  | 1.289(5) | C(32)-C(33) | 1.374(6) | O(4)-C(71)  | 1.413(7)  |
| N(6)-C(61) | 1.432(5) | C(33)-C(34) | 1.380(7) | O(4)-C(74)  | 1.418(6)  |
| O(1)-C(5)  | 1.169(5) | C(34)-C(35) | 1.376(7) | C(71)-C(72) | 1.458(8)  |
| O(2)-C(6)  | 1.186(5) | C(35)-C(36) | 1.390(6) | C(72)-C(73) | 1.392(10) |
| O(3)-C(7)  | 1.168(5) | C(41)-C(42) | 1.376(5) | C(73)-C(74) | 1.479(8)  |
| C(1)-C(2)  | 1.516(5) | C(41)-C(46) | 1.382(6) |             |           |
|            |          |             |          |             |           |

Table 4: Bond lengths [Å] for bg\_213x.

Table 5: Bond angles [°] for bg\_213x.

| Ũ                |            |                   |          |
|------------------|------------|-------------------|----------|
| C(6)-Cr(1)-C(5)  | 83.58(19)  | N(4)-C(3)-C(1)    | 116.7(3) |
| C(6)-Cr(1)-C(7)  | 85.64(19)  | N(3)-C(3)-C(1)    | 118.0(3) |
| C(5)-Cr(1)-C(7)  | 85.52(19)  | N(6)-C(4)-N(5)    | 126.1(3) |
| C(6)-Cr(1)-N(4)  | 176.74(16) | N(6)-C(4)-C(1)    | 118.0(3) |
| C(5)-Cr(1)-N(4)  | 98.29(16)  | N(5)-C(4)-C(1)    | 115.7(3) |
| C(7)-Cr(1)-N(4)  | 91.83(15)  | O(1)-C(5)-Cr(1)   | 174.1(4) |
| C(6)-Cr(1)-N(2)  | 95.26(16)  | O(2)-C(6)-Cr(1)   | 173.7(4) |
| C(5)-Cr(1)-N(2)  | 175.18(16) | O(3)-C(7)-Cr(1)   | 174.9(4) |
| C(7)-Cr(1)-N(2)  | 99.07(16)  | C(12)-C(11)-C(16) | 119.7(4) |
| N(4)-Cr(1)-N(2)  | 83.10(12)  | C(12)-C(11)-N(1)  | 122.7(4) |
| C(6)-Cr(1)-N(6)  | 100.00(15) | C(16)-C(11)-N(1)  | 117.4(4) |
| C(5)-Cr(1)-N(6)  | 93.06(16)  | C(11)-C(12)-C(13) | 119.6(4) |
| C(7)-Cr(1)-N(6)  | 174.01(17) | C(14)-C(13)-C(12) | 121.0(5) |
| N(4)-Cr(1)-N(6)  | 82.61(12)  | C(13)-C(14)-C(15) | 120.1(4) |
| N(2)-Cr(1)-N(6)  | 82.52(12)  | C(14)-C(15)-C(16) | 119.8(5) |
| C(2)-N(1)-C(11)  | 131.8(4)   | C(15)-C(16)-C(11) | 119.7(4) |
| C(2)-N(2)-C(21)  | 115.5(3)   | C(22)-C(21)-C(26) | 119.8(4) |
| C(2)-N(2)-Cr(1)  | 121.0(3)   | C(22)-C(21)-N(2)  | 119.9(4) |
| C(21)-N(2)-Cr(1) | 122.8(2)   | C(26)-C(21)-N(2)  | 120.2(4) |
| C(3)-N(3)-C(31)  | 126.0(3)   | C(23)-C(22)-C(21) | 119.8(4) |
| C(3)-N(4)-C(41)  | 117.2(3)   | C(24)-C(23)-C(22) | 120.7(4) |
| C(3)-N(4)-Cr(1)  | 121.7(3)   | C(25)-C(24)-C(23) | 118.9(5) |
| C(41)-N(4)-Cr(1) | 120.2(2)   | C(26)-C(25)-C(24) | 121.6(4) |
| C(4)-N(5)-C(51)  | 121.0(3)   | C(25)-C(26)-C(21) | 119.1(4) |
| C(4)-N(6)-C(61)  | 118.5(3)   | C(32)-C(31)-C(36) | 120.0(4) |
| C(4)-N(6)-Cr(1)  | 120.4(3)   | C(32)-C(31)-N(3)  | 119.9(4) |
| C(61)-N(6)-Cr(1) | 119.9(2)   | C(36)-C(31)-N(3)  | 120.0(4) |
| C(2)-C(1)-C(3)   | 110.6(3)   | C(33)-C(32)-C(31) | 120.5(4) |
| C(2)-C(1)-C(4)   | 108.9(3)   | C(32)-C(33)-C(34) | 119.7(4) |
| C(3)-C(1)-C(4)   | 110.3(3)   | C(35)-C(34)-C(33) | 120.3(4) |
| N(2)-C(2)-N(1)   | 123.0(4)   | C(34)-C(35)-C(36) | 120.1(5) |
| N(2)-C(2)-C(1)   | 117.2(3)   | C(31)-C(36)-C(35) | 119.2(4) |
| N(1)-C(2)-C(1)   | 119.8(3)   | C(42)-C(41)-C(46) | 119.1(4) |
| N(4)-C(3)-N(3)   | 125.1(3)   | C(42)-C(41)-N(4)  | 120.3(4) |

| C(46)-C(41)-N(4)  | 120.6(4) | C(66)-C(61)-C(62) | 119.3(4) |
|-------------------|----------|-------------------|----------|
| C(43)-C(42)-C(41) | 119.6(4) | C(66)-C(61)-N(6)  | 120.0(4) |
| C(42)-C(43)-C(44) | 121.6(5) | C(62)-C(61)-N(6)  | 120.7(4) |
| C(45)-C(44)-C(43) | 118.7(4) | C(63)-C(62)-C(61) | 119.8(4) |
| C(44)-C(45)-C(46) | 120.4(4) | C(62)-C(63)-C(64) | 121.1(5) |
| C(41)-C(46)-C(45) | 120.4(4) | C(65)-C(64)-C(63) | 118.7(5) |
| C(52)-C(51)-C(56) | 119.9(4) | C(64)-C(65)-C(66) | 120.9(5) |
| C(52)-C(51)-N(5)  | 120.7(4) | C(61)-C(66)-C(65) | 120.1(4) |
| C(56)-C(51)-N(5)  | 119.3(4) | C(71)-O(4)-C(74)  | 109.9(4) |
| C(51)-C(52)-C(53) | 120.6(4) | O(4)-C(71)-C(72)  | 106.6(5) |
| C(52)-C(53)-C(54) | 119.7(5) | C(73)-C(72)-C(71) | 109.4(6) |
| C(55)-C(54)-C(53) | 119.7(5) | C(72)-C(73)-C(74) | 107.4(5) |
| C(54)-C(55)-C(56) | 120.5(5) | O(4)-C(74)-C(73)  | 106.7(5) |
| C(51)-C(56)-C(55) | 119.5(5) |                   |          |