SUPPORTING INFORMATION

Coordination and Conformational Isomers in Mononuclear Iron Complexes with Pertinence to the [FeFe] Hydrogenase Active Site

Andreas Orthaber,^{a,‡} Michael Karnahl,^{a,‡,#} Stefanie Tschierlei,^{a,§} Daniel Streich,^a Matthias Stein,^{b,*} and Sascha Ott^{a,*}

^a Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden. ^b Max-Planck-Institute for Dynamics of Complex Technical System, Sandtorstr. 1, 39106 Magdeburg, Germany.

Supporting Information – Table of Content:

Synthesis of penta-coordinate complexes 3a-d , 4a , 5a	p 2
Crystallographic data of ligand $\mathbf{P}^{cyc}\mathbf{N}^{Ph}$ the complexes 3a and 3c .	р 3-4
NMR data of the complexes 3a-d , 4a and 5a .	p 5-11
IR data of the complexes 3a-d , 4a and 5a .	p 12-14
UVvis-SEC data of complex 3a .	p 15
Electrochemical and Electrocatalytic data of complex 3a.	p 15-16
Details of DFT calculations.	p 17-22

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2014

Scheme ESI-1. Synthesis of penta coordinate complexes **3a-d** (X=Y=H), **4a** (X=Cl, Y = H), and **5a** (X=H, Y = CH₃). **a**: R= Ph, **b**: R = benzyl, **c**: R = *cyclo*-hexyl, **d** R = *tert*.-butyl.

	P ^{cyc} N ^{Ph}	3a (R = phenyl)	3c*CH ₂ Cl ₂
			(R= cyclo-hexyl)
Empirical formula	$C_{30}H_{32}N_2P_2$	$C_{35}H_{32}FeN_2OP_2S_2$	$[C_{35}H_{44}FeN_2OP_2S_2]_2$
			$*[CH_2Cl_2]_2$
Formula weight [g mol ⁻¹]	482.52	678.54	1551.11
CCDC-No.	972156	822967	972155
Crystal system	Orthorhombic	Monoclinic	Monoclinic
Space group	Pba2	$P2_l/n$	<i>P2</i> ₁ /c
Unit cell dimensions a[Å]	9.3653(2)	10.4473(5)	17.700(8)
b [Å]	26.2717(7)	17.7556(9)	17.198(8)
c [Å]	5.22710(10)	17.6965(9)	24.263(12)
α, β, γ [°]	90, 90, 90	90, 98.062(1), 90	90, 97.888(7), 90
Volume [Å ³], Z	1286.09(5), 2	3250.2(3), 4	7316(6), 4
Density [g cm ⁻³]	1.246	1.387	1.408
$\mu(MoK_{\alpha}) [mm^{-1}]$	0.190	0.722	0.792
F(000)	512	1408	3248
Crystal size [mm]	0.6 x 0.3 x 0.3	0.33 x 0.25 x 0.13	0.13 x 0.11 x 0.05
Crystal Description	Colorless block	Green plates	Green block
Temperature [K]	100(2)	100(2)	100(2)
Radiation [Å]	0.71073	0.71073	0.71073
Θ range min, max [°]	2.31 - 26.39	2.28 - 28.82	1.161 - 26.000
Index ranges	-11 \leq h \leq 11, -32 \leq k \leq	-15 \leq h \leq 15, -23 \leq k \leq	$-21 \le h \le 21, -21 \le k$
	27, $-6 \le l \le 6$	$25, -25 \le 1 \le 25$	\leq 21, -29 \leq 1 \leq 29
Reflections collected	6851	62319	103410
Reflections unique,	2584	9995	14381
Parameters, restraints	154, 1	388, 0	829
Flack parameter	0.01(9)	-	-
R(int)	0.0335	0.0655	0.3324
S	1.039	0.967	0.998
$R_1 [I > 2\sigma(I)]$	0.0306	0.0418	0.1094
wR_2 (all data)	0.0791	0.1183	0.3151
larges difference	0.256 / -0.150	1.396 / -0.364	1.899 / -1.222
peak/hole [e A ⁻³]			

Table ESI-1.	Crystallographic	data and refinement	details for comp	plexes 3a and 3c.

Figure ESI-1. Top: Molecular packing of **3a** indicating significant C-H··· π interactions. (red dotted line). Bottom: Molecular packing of the independent units containing Fe1 and Fe2 of **3c** including the DCM solvates.

NMR data of the complexes 2, 3a-d, 4a and 5a.

Figure ESI-2. . ¹H-NMR spectrum (400 MHz, CDCl₃) of complex [Fe(µ-bdt)(PPh₃)₂(CO)₂] 2

Figure ESI -3. ${}^{31}P{}^{1}H$ -NMR spectrum (168 MHz, CDCl₃) of complex [Fe(μ -bdt)(PPh₃)₂(CO)₂] (2)

Figure ESI -4. ¹H-NMR spectra (400 MHz, CDCl₃ solution) of complex $[Fe(\mu-bdt)(P^{Ph}_2N^{Ph}_2)(CO)]$ (3a)

Figure ESI -5. ¹³C{¹H}-NMR spectrum (75.5 MHz, CD₂Cl₂ solution) of complex [Fe(μ -bdt)(P^{Ph}₂N^{Ph}₂)(CO)] **3a**.

Figure ESI -6. ¹H-NMR spectra (400 MHz, CDCl₃ solution) of complex $[Fe(\mu-bdt)(P^{Bn}_2N^{Ph}_2)(CO)]$ **3b** (Bn = benzyl).

Figure ESI -7. ¹³C{¹H}-NMR spectrum (75.5 MHz, CDCl₃ solution) of complex [Fe(μ -bdt)(P^{Bn}₂N^{Ph}₂)(CO)] **3b** (Bn = benzyl).

Figure ESI -8. ¹H-NMR spectra (400 MHz, CDCl₃ solution) of complex [Fe(μ -bdt)(P^{Cyc}₂N^{Ph}₂)(CO)] **3c** (Cyc = *cyclo*-hexyl).

Figure ESI -9 ¹³C{¹H}-NMR spectrum (75.5 MHz, CDCl₃ solution) of complex [Fe(μ -bdt)(P^{Cyc}₂N^{Ph}₂)(CO)] **3c** (Cyc = *cyclo*-hexyl).

Figure ESI -10. ¹H-NMR spectra (400 MHz, CDCl₃ solution) of complex [Fe(μ -bdt)(P^{tBu}₂N^{Ph}₂)(CO)] **3d** (tBu = *tert*.-butyl).

Figure ESI -11. ¹H-NMR spectra (400 MHz, CDCl₃ solution) of complex [Fe(μ -Cl₂bdt)(P^{Ph}₂N^{Ph}₂)(CO)] **4a** (μ -Cl₂bdt = 3,6-dichloro-1,2-benzenedithiolate).

Figure ESI -12. ¹H-NMR spectra (400 MHz, CDCl₃ solution) of complex[Fe(μ -Mebdt)(P^{Ph}₂N^{Ph}₂)(CO)] **5a** (μ -Mebdt = 4-methyl-1,2-benzenedithiolate).

Figure ESI -13. ¹³C{¹H}-NMR spectrum (75.5 MHz, CD₂Cl₂ solution) of complex [Fe(μ -Mebdt)(P^{Ph}₂N^{Ph}₂)(CO)] **5a** (μ -Mebdt = 4-methyl-1,2-benzenedithiolate).

Figure ESI -14. Comparison of ³¹P{¹H}-NMR spectra (161.8 MHz, CDCl₃) of the complexes **3a-d.**

Figure ESI -15. Normalized IR spectra of 3a (line), 3b (dashed), 3c (dotted) and 3d (dash-dotted) in dichloromethane in the region of the carbonyl stretching vibrations.

Figure ESI -16. Normalized IR spectra of **3a** (line), **4a** (dashed) and **5a** (dotted) in acetonitrile (left) and in dichloromethane (right) in the region of the carbonyl stretching vibrations.

Figure ESI-17. IR spectra in the region of the carbonyl stretching vibrations of **3b** (left) and **3c** (right) before (line) and after the addition of 5 eq. trifluoromethanesulfonic acid (dashed). Both protonated complexes were successfully deprotonated with 5eq triethylamine. Conditions: acetonitrile, ambient temperatures.

Figure ESI -18. IR spectra in the region of the carbonyl stretching vibrations of **3d** before (line) and after the addition of 43 eq. p-toluenesulfonic acid (dashed). Conditions: acetonitrile, ambient temperatures.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2014

Figure ESI -19. UV/vis-Spectro-electro chemistry (SEC) spectra (left) recorded during reduction of a 1.0 mM solution of **3a** in acetonitrile solution under inert conditions. UV/vis absorbance vs. time traces (right) for two selected maxima [439 (black) and 581 nm (purple)].

Figure ESI -20. Cyclic voltammograms of **3a** (1.0 mM) in ACN solution in the absence (black) and presence (colored curves) of increasing AcOH concentrations (left: 0-40 eq. and right: 0-100 eq.). The increase in current in the presence of acid indicates that the proton reduction is catalyzed by the iron complex. Conditions: scan rate 100 mV s⁻¹, (Bu)₄NPF₆ (0.1 M) as supporting electrolyte, Ag/Ag⁺ reference electrode and glassy carbon working electrode.

Figure ESI -21. Electro-catalytic activity of **3a**. For bulk-electrolysis experiments 6 ml of a 1 mM solution of **3a**, 0.1 M acetic acid and 0.1 M (Bu)₄NPF₆ in ACN were used. The reduction was carried out at -1.68 V *vs*. Fc/Fc⁺. Turnovers of produced hydrogen are given as determined from the integrated current (solid line, left axis) and by *in situ* gas chromatography (dots, right axis). The inset compares the charge passed through the working electrode immersed in 10 mM acetic acid, 0.1 M (Bu)₄NPF₆ in ACN at an applied potential of -1.68 V *vs*. Fc/Fc⁺ in presence (solid line) and absence (dotted line) of 1 mM **3a**.

Calculation of Overpotential:

A value of -70 mV vs. Fc⁺/Fc was used for the thermodynamic potential of the proton/dihydrogen couple in acetonitrile. This yields a thermodynamic potential of -1.39 V vs. Fc⁺/Fc for the reduction of acetic acid in acetonitrile (based on $E^{\circ}[HA] = E^{\circ}[H^{+}] - 2.3$ RT/F pK_a[HA]). The corresponding overpotential at which the bulk electrolysis experiments were performed thus amounts to -290 mV (= - 1.68 + 1.39 V vs. Fc⁺/Fc).

Computational Details

Table ESI-2 . a) Hexacoordinate compound –pentacoordinate compound-CO + $5/2$ RT. T = 298 K, 1	l
atm	

Compound (Method)	CO ligand binding free energies ^a		
1			
BP86+D3/TZVP	-39.45		
BP86+D3/TZVP COSMO	-39.78		
B3LYP+D3/TZVP	-27.43		
B3LYP+D3/TZVP COSMO	-27.58		
2	Square pyramidal	Trigonal bi- pyramidal	
BP86+D3/TZVP	-4.77	-33.21	
BP86+D3/TZVP COSMO	-5.14	-26.78	
B3LYP+D3/TZVP	+1.38	-18.63	
B3LYP+D3/TZVP COSMO	+1.14	-11.53	

Table ESI-3. a) Td-tbipy. Energy difference of Td and square pyramidal conformations of calculated pentacoordianted compexes 1^{-CO} and 2^{-CO} . b) Calculated at 298 K, 1 atm

	ΔE (0 K)	ΔH	$T\Delta S^{b}$	ΔG^{b}
1^{-CO} (Td-tbipy) ^a				
BP86+D3/TZVP	-19.4	-18.7	+1.6	-20.3
BP86+D3/TZVP COSMO	-22.3	-22.7	+3.3	-26.0
B3LYP+D3/TZVP	-17.4	-17.4	+0.3	-17.3
B3LYP+D3/TZVP COSMO	-19.7	-21.4	+0.5	-21.9
2^{-CO} (Td-tbipy) ^a				
BP86+D3/TZVP	-27.5	-27.4	+1.0	-28.4
BP86+D3/TZVP COSMO	-27.1	-26.2	+4.6	-21.6
B3LYP+D3/TZVP	-18.3	-19.7	+0.3	-20.0
B3LYP+D3/TZVP COSMO	-18.0	-17.2	+4.5	-12.7

Figure ESI-22. Comparison of calculated vibrational spectra of **3a** and **3a'** between 1200 and 2400 cm⁻¹. (B3LYP+D3/TZVP results)

Table ESI-4.	Energy,	enthalpy	and Gibbs	s energy	differences	of 3a'	and 3a	given	in kcal	mol ⁻¹	•
Thermodynan	nic corre	ctions ap	ply to 298	.15 K ar	d p = 1 atm	l .					

3a'-3a	ΔE (0 K)	Δ thermal	ΔΗ	ΤΔS	ΔG
[kcal mol ⁻¹]		corrections			
BP86+D3/TZVP	-4.09	+1.35	-2.75	+1.77	-4.52
BP86+D3/TZVP COSMO	-5.32	+1.16	-4.16	+2.41	-6.57
B3LYP+D3/TZVP	-3.63	+1.05	-2.59	+2.71	-5.30
B3LYP+D3/TZVP COSMO	-5.12	+0.13	-5.25	+1.54	-6.79

3a'	CO ligand binding free energies
	in kcal mol ⁻¹
BP86+D3/TZVP	+1.57
BP86+D3/TZVP COSMO	+0.52
B3LYP+D3/TZVP	+4.88
B3LYP+D3/TZVP COSMO	+3.91

Table ESI-5. CO ligand binding affinities of complex 3a'

Figure ESI-23. Depiction of calculated structures of complex 3a. BP86+D3/def2-TZVP COSMO (acetonitrile). A) 3a'_{endo/exo-ph} B) 3a'_{endo/endo} C) 3a'_{exo/exo} D) 3a'_{endo/exo-ph} E) 3a^{cryst}_{endo-ph} F) 3a^{cryst}_{endo-ph} F)

Table S6. Relative energies of complex **3a** and the corresponding CO stretching vibrations. BP86+D3/def2-TZVP/COSMO(acetonitrile).

	C=O freq v/cm-1	$\Delta\Delta G$ (298K, 1atm)/kcal mol-1
3a'endo/exo-ph	1886	+ 3.0
3a'endo/endo	1922	+ 2.8
3a'exo/exo	1877	+ 2.4
3a'endo/exo-lp	1900	+1.7
3a ^{cryst} endo-lp	1887	0.0
3a ^{cryst} endo-ph	1899	1.4

Figure ESI-24. Conformations of complex **3a**, as found in the crystal **3a**^{cryst} (left) and the squarepyramidal **3a**' (right) which is 5 kcal mol⁻¹ lower in energy determined by B3LYP+D3/TZVP calculations.

Figure ESI-25. Superposition of calculated vibrational spectra (CO strech region) of **3a**_{endo-lp} (red, dashed), **3a**_{endo-ph} (red, solid) and **3a'**_{endo-lp}, (black, dashed) **3a'**_{endo-ph} (black, solid). Results from BP86+D3/def2-TZVP COSMO (acetonitrile) calculations.

Figure ESI-26. Potential CO coordination to penta coordinate complexes. 3a'(left), 3a'+CO(middle), $3a^{cryst}$ (right). Note that CO coordination is not possible in $3a^{cryst}$.