Supporting information

NMR experimental: Bruker Avance-300, Avance-400, Avance-500 and Avance-600 were used for solution NMR analysis. 1H NMR DOSY measurements were performed at 500.13 MHz with a 5 mm 1H/X z-gradient BBI probe and applying a PFGSTE pulse sequence using bipolar gradients. DOSY spectra were generated with the DOSY module of NMRNotebookTM software, via maximum entropy and inverse Laplace transform calculation. 1H NMR DOSY measurements were performed at 500.13 MHz with a 5 mm 1H/X z-gradient BBI probe and applying a PFGSTE pulse sequence using bipolar gradients. The thermogravimetric analyses (TGA) were performed on a Pyris 6 (PerkinElmer) apparatus. X-ray diffraction data were collected on a Bruker SMART CCD diffractometer with MoKα radiation. The structures were solved using SHELXS-97 and refined by full matrix least-squares on F2 using SHELXS-97 with anisotropic thermal parameters for all non-hydrogen atoms. The hydrogen atoms were introduced at calculated positions and not refined (riding model). All of the reagents were purchased from commercial sources without further purification: Ti(OPri)$_4$ (TCI), catechol (Fluka). Pyridine was distilled over KOH before used, the amount of water was determined by titration with a Karl Fischer apparatus (< 0.0015 %). The reaction leading to [Ti$_{10}$O$_{12}$(cat)$_8$(py)$_8$] was performed under air.

Procedure for the synthesis of Ti$_2$(cat)$_4$(DMA)$_2$

The reaction was conducted under a nitrogen atmosphere. To a stirred solution of catechol (1 g, 9.08 mmol) in dimethylacetamide (10 ml) was added Ti(OPri)$_4$ (1.33 ml, 4.54 mmol). A dark red color appeared instantaneously in the medium. After one hour, a red precipitate was formed which was recovered by filtration on a fritted funnel, washed several times with diethyl ether (30 ml) and dried under reduced pressure to afford Ti$_2$(cat)$_4$(DMA)$_2$ as a dark red powder (2.8 g, 88 %). IR: 1610, 1483, 1478, 1465, 1407, 1245, 1205, 875, 811, 758, 741, 642, 629, 615 cm$^{-1}$. Anal. calcd for C$_{32}$H$_{34}$O$_{10}$Ti$_2$N$_2$ (MW 702.12): C 54.72; H 4.88; N 3.99. Found C 54.51; H 5.13; N 3.99.

Synthesis of [Ti$_{10}$O$_{12}$(cat)$_8$(Phpy)$_8$] complex

4-Phenylpyridine (1.4 eq) in CHCl$_3$ was mixed with a solution of Ti$_{10}$O$_{12}$(cat)$_8$(py)$_8$ (5 mg) in CHCl$_3$. The desired product was obtained by slow diffusion of diethyl ether into the mixture. The crystalline precipitate was filtered and dried under vacuum. 13C NMR (125 MHz,
CD₂Cl₂): 159.2 (C-O catecholato), 157.3 (C-O catecholato), 155.7 (C-O catecholato), 153.8 (C-O catecholato), 149.8 (C-H (2, 6) Phpy), 148.8 (C (4) Phpy), 137.2 (C (1) Phpy), 129.0 (C-H (3, 4, 5) Phpy), 126.9 (C-H (2, 6) Phpy), 121.3 (C-H (3, 5) Phpy), 120.9 (C-H catecholato), 120.5 (C-H catecholato), 120.0 (C-H catecholato), 119.7 (C-H catecholato), 119.5 (C-H catecholato), 117.7 (C-H catecholato), 115.2 (C-H catecholato), 112.1 (C-H catecholato) ppm.

Anal. calcd for C₁₃₆H₁₀₄N₈O₂₈Ti₁₀, CHCl₃ (MW 2896.37): C 56.81; H 3.65; N 3.87. Found C 56.37; H 4.05; N 4.00.
Figure 1: 1H NMR spectra of [Ti$_{10}$O$_{12}$(cat)$_8$(py)$_8$] (CD$_2$Cl$_2$, 500 MHz)

Figure 2: 13C NMR spectra of [Ti$_{10}$O$_{12}$(cat)$_8$(py)$_8$] (CD$_2$Cl$_2$, 125 MHz)
Figure 3: 13C NMR spectra of $[[\text{Ti}_{10}\text{O}_{12}\text{(cat)}_8\text{(py)}_8]]$ (CDCl$_3$, 125 MHz)

Figure 4: 13C NMR spectra of $[[\text{Ti}_{10}\text{O}_{12}\text{(cat)}_8\text{(py)}_8]]$ (DMSO, 125 MHz)
Figure 5: 13C NMR spectrum of the compound which crystallized after dissolution of the $[\text{Ti}_{10}\text{O}_{12}\text{(cat)}_{8}(4,4'\text{-bipy})_{8}]_{\infty}$ precipitate in pyridine (CDCl$_3$, 125MHz). The $[\text{Ti}_{10}\text{O}_{12}\text{(cat)}_{8}(4,4'\text{-bipy})_{8}]_{\infty}$ precipitate was obtained by mixing $[\text{Ti}_{10}\text{O}_{12}\text{(cat)}_{8}(\text{py})_{8}]$ and 4,4'-bipyridine in CHCl$_3$. This spectrum is identical as the one recorded for $[\text{Ti}_{10}\text{O}_{12}\text{(cat)}_{8}(\text{py})_{8}]$.

Figure 6: 13C NMR spectrum of crystals obtained by reaction between Ti$_2$(cat)$_4$(DMA)$_2$ and pyridine without addition of water (CDCl$_3$, 125 MHz)
Figure 7: 13C NMR spectra of crystals obtained by reaction between Ti$_2$(cat)$_4$(DMA)$_2$ and pyridine with addition of water (10 µL) (CDCl$_3$, 125 MHz)

Figure 8: 13C NMR spectra of the [Ti$_{10}$O$_{12}$(cat)$_8$(Phpy)$_8$] microcrystalline powder obtained by mixing [Ti$_{10}$O$_{12}$(cat)$_8$(py)$_8$] with 4-Phenylpyridine in chloroform after diffusing diethylether (CD$_2$Cl$_2$, 125 MHz)
Figure 9: Powder X-Ray Diffraction patterns of [Ti_{10}O_{12}(cat)_{8}(py)_{8}] obtained after dissolving the [Ti_{10}O_{12}(cat)_{8}(4,4'-bipy)]_{\infty} precipitate and the one simulated from the single crystal diffraction data of [Ti_{10}O_{12}(cat)_{8}(py)_{8}] (red).

Figure 10: Powder X-Ray Diffraction patterns of [Ti_{10}O_{12}(cat)_{8}(py)_{8}] obtained by reacting Ti_{2}(cat)_{4}(DMA)_{2} and pyridine without water (blue), with 10 µL of water (green) and the one simulated from the single crystal diffraction data of [Ti_{10}O_{12}(cat)_{8}(py)_{8}] (red).
Figure 11: UV-visible spectra of $[\text{Ti}_{10}\text{O}_{12}\text{(cat)}_8\text{(py)}_8] \cdot \text{(py)}_6$ in CH$_2$Cl$_2$, c = 10$^{-5}$ mol.l$^{-1}$.

<table>
<thead>
<tr>
<th>Weight of Ti$_2$(cat)$_4$(DMA)$_2$ (mg)</th>
<th>Volume of pyridine (mL)</th>
<th>Volume of water (µL)</th>
<th>Weight of [Ti${10}$O${12}$(cat)$_8$(py)$_8$] crystals (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>7.5</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>100</td>
<td>7.5</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>100</td>
<td>7.5</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>7.5</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>7.5</td>
<td>30</td>
<td>No crystals</td>
</tr>
<tr>
<td>100</td>
<td>7.5</td>
<td>40</td>
<td>No crystals</td>
</tr>
</tbody>
</table>

Table 1: Synthesis of $[\text{Ti}_{10}\text{O}_{12}\text{(cat)}_8\text{(py)}_8]$ performed with an increasing amount of water
Figure 12: Thermogravimetric analysis of [Ti₁₀O₁₂(cat)₈(py)₈]: The analysis was performed under air at a scan rate of 5 °C.min⁻¹. The 34 % weight obtained at 600 °C corresponds to the residual TiO₂ formed during the thermolysis process. The weight losses obtained are compatible with partially desolvated crystals displaying the [Ti₁₀O₁₂(cat)₈(py)₈]•(py)₄ formula. In this case the weight loss corresponding to the free pyridine molecules is evaluated as 12.7 % and the theoretical percentage of residual TiO₂ is 32.2 %.

Figure 13: Thermal ellipsoids plot of [Ti₁₀O₁₂(cat)₈(py)₈]