Supporting Information

Mesoporous Silica Nanoparticles for Enhancing Delivery Efficiency of Immunostimulatory DNA Drugs

Cuilian Taoa, Yufang Zhub, Yi Xua, Min Zhub, Hiromi Moritac, Nobutaka Hanagatac

a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.

b School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.

c Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

*Corresponding authors: Yufang Zhu

Tel: +86-21-55271663;

Email: zjf2412@163.com
Fig. S1 The maximal dsDNA loading capacities on amino-modified solid silica nanoparticles (SiO$_2$-NH$_2$), MCM-41 mesoporous silcia naoparticles (MCM-41-NH$_2$) and MSN-NH$_2$ nanoparticles.
Fig. S2 TG analysis for MSNs and MSN-NH$_2$ nanoparticles
Fig. S3 The release profiles for dsDNA from MSN-NH$_2$/dsDNA complexes in solutions with pH7.4 and pH6.2.