Supporting Information

A Phosphoramidite-Based [FeFe]H2ase Model Complex Displaying Fast Electrocatalytic Proton Reduction

Sofia Derossi,* René Becker,* Ping Li,* František Hartl* a,b and Joost N.H. Reek* a

Methods..2
Syntheses..3
UV-vis and fluorescence spectroscopy ...5
NMR spectroscopy..8
Electrochemistry..9
Infrared spectroscopy...14
Spectroelectrochemistry..15
References..16
Methods

General procedures. All syntheses were carried out under an argon atmosphere, using standard Schlenk techniques. For all purifications involving column chromatography, a column with dry silica was prepared beforehand and left under vacuum overnight; the chromatography was performed under inert atmosphere with degassed solvents. All 1H and 31P NMR spectra were recorded on a Bruker AV 400 MHz spectrometer. IR spectra were recorded on a Bruker Vertex 70v FTIR spectrometer.

Spectroelectrochemistry. IR spectroelectrochemical measurements were performed with an optically transparent thin-layer electrochemical (OTTLE) cell equipped with CaF$_2$ optical windows and a minigrid platinum working electrode (32 wires per cm). The optical beam can pass directly through the working electrode, allowing the redox processes taking place in the thin solution layer surrounding the working electrode to be monitored spectroscopically. The controlled-potential electrochemical conversions were carried out with a PA4 potentiostat (EKO, Polná, Czech Republic). A slow scan rate of 2 mV/s was applied to allow quantitative electrochemical conversion. The spectra were recorded at different potential values on the thin-layer voltammograms; the the potential sweep was paused during the recording. The solutions were prepared in a similar fashion described for the other electrochemistry experiments. IR spectra were recorded on a Bruker Vertex 70v FTIR spectrometer.

Electrochemistry. Cyclic voltammetry was performed on 1 mM solutions of the Fe$_2$ complexes in butyronitrile containing 0.1 M nBu$_4$NPF$_6$ as the supporting electrolyte. The voltammograms were recorded using a Metrohm 663 VA stand in conjunction with a PGSTAT302N potentiostat, a static mercury drop electrode (SMDE; drop size 2) as a working electrode, a glassy carbon rod as an auxiliary electrode and a double-junction reference electrode (inner compartment: 3 M KCl(aq)/Ag; outer compartment: 0.1 M nBu$_4$NPF$_6$ in butyronitrile). Before every measurement, the solution was purged with nitrogen for 1 minute. Single equivalents of acetic acid were added as a 10% v/v solution in butyronitrile. To convert the potential values of the 3 M KCl/Ag reference to Fc/Fc$^+$, a correction factor of $–0.43$ V was used.

Steady state absorption and emission. UV-vis measurements were conducted on a Cary spectrophotometer and a Scinco S3100 diode array spectrophotometer. Luminescence measurements were recorded using a Spex Fluorolog 3 spectrofluorimeter. A typical UV-vis and luminescence titration experiment was performed using two stock solutions. The solution of the chromophore (host) was normally 8×10^{-5} M of ZnTPP in DCM. The solution of the diiron catalyst (guest) was about 20 times more concentrated, and was prepared by dissolving the complex in the host solution (in order to keep the concentration of the chromophore constant throughout the experiment). For the UV-vis titration, a 1 mm quartz cuvette was employed, containing 200 µL of host solution alone at the starting point. In the case of the luminescence titration, a 1 cm quartz cuvette was filled with 2 mL of the host solution alone at the starting point. In both cases, known aliquots of the guest solution were added to the cuvette, followed by recording of a spectrum. The excitation wavelength in case of the luminescence experiment was chosen to match the isosbestic point found in the UV-vis titration.
Materials. Unless stated otherwise, all chemicals were commercially available and employed without further purification. All solvents were purified via SPS (Solvent Purification System) or via distillation and degassed by mean of argon bubbling prior to use. The phosphoramidite linkers mPyPA and PhPA, the hexacarbonyl complex [Fe₂(μ-pdt)(CO)₆]³ and the diiron catalysts 1⁴ and 3⁵ were prepared according to the previously published methods.

Syntheses

\[\text{Fe}_2(\mu-\text{pdt})(\text{CO})_5(\text{mPyPA}) \] (2) MeCN (10 mL) was added to a Schlenk vessel, charged with [Fe₂(μ-pdt)(CO)₆] (165 mg, 0.428 mmol), mPyPA (223 mg, 0.428 mmol) and dry Me₃NO (53 mg, 0.48 mmol). The red solution was stirred and full conversion was achieved in 1 h, as monitored by IR spectroscopy. The solvent was removed under vacuum, and the resulting red-brown solid was purified on a silica gel column, using 3% MeOH in DCM as the eluent. The product was collected as an intense red band. Yield: 60%.

IR: ν(CO)/cm⁻¹ in MeCN 2047(s), 1993(s), 1975(s) and 1962(m).

\(^1\)H NMR: aromatic region in CDCl₃ δ 8.91 (dd, 2H), 8.59 (dd, 1H), 8.45 (dd, 1H), 8.21 (dt, 1H), 8.02 (dt, 1H), 7.34 (m, 2H), 7.30 (s, 1H) and 7.24 (s, 1H) ppm.

\(^{31}\)P NMR: in CDCl₃ δ 187.5 ppm.

MS (FAB⁺) for C₄₀H₃₈Fe₃N₃O₇PS₂: m/z calculated 879.06, observed 880.07 [M + H⁺].

UV-vis spectrum: in DCM 349 nm (ε = 12320 cm⁻¹M⁻¹), shoulder at 491 nm (ε = 1230 cm⁻¹M⁻¹). The residual absorption at 600 nm has a molar absorption coefficient of 90 cm⁻¹M⁻¹.

\[\text{Fe}_2(\mu-\text{pdt})(\text{CO})_5(\text{PhPA}) \] (4) MeCN (10 mL) was added to a Schlenk vessel, charged with [Fe₂(μ-pdt)(CO)₆] (202 mg, 0.523 mmol), PhPA (300 mg, 0.577 mmol) and Me₃NO (64 mg, 0.57 mmol). The red solution was stirred and abundant precipitate formed within one hour. The reaction was monitored by IR spectroscopy. The solvent was removed under vacuum, and the crude solid was purified on a silica gel column, using pure DCM as the eluent. The desired product eluted in the first fraction and was isolated as a bright red solid. Yield: 62%.

IR: ν(CO)/cm⁻¹ in MeCN 2045(s), 1992(s), 1973(m) and 1961(sh).
[Fe₂(μ-pdt)(CO)₄(mPyPA)₂] (5) The disubstituted complex 5, was synthesized as a disproportionation product of 2. A Schlenk vessel was charged with 2 (108 mg, 123 mmol) and decamethylcobaltocene, CoCp²⁺. The solids were dissolved in THF (8 mL) and the resulting solution was stirred for 2 h. The solvent was removed under vacuum and the product was purified by chromatography on a silica column, using 4% MeOH in DCM as the eluent. The product eluted as the last, third band. Yield: 22%.

IR: ν(CO)/cm⁻¹ in MeCN 2011(s), 1965(s), 1948(s).

¹H NMR: aromatic region in CDCl₃ δ 8.89 (dd, 1H), 8.82 (m, 3H), 8.63 (dd, 1H), 8.53 (dd, 1H), 8.29 (dd, 1H), 8.18 (dd, 1H), 7.97 (m, 3H), 8.01 (td, 2H), 7.32 (m, 4H), 7.14 (m, 2H) and 7.10 (m, 2H) ppm.

³¹P NMR: in CDCl₃ δ 187.5 ppm.

MS (FAB⁺) for C₇₁H₇₀Fe₂N₆O₈P₂S₂²⁺; m/z calculated 1372.29, observed 1373.30 [M + H⁺].
UV-vis and fluorescence spectroscopy

Figure S1 UV-vis spectra showing the titration of ZnTPP with 2 in DCM. Only the Q-bands of the porphyrins are shown. The first point of the titration corresponds to pure ZnTPP (8.8·10⁻⁵ M, pink curve); the last point corresponds to total addition of 4.7 equis 2 (dark blue line). The formation of the assembly is accompanied by a marked red shift of the absorption bands.

Figure S2 Association constant fitting using Matlab for the titration in Fig. S1.
Figure S3 UV-vis spectra showing the titration of ZnTPP with mPyPA in DCM. Only the Q-bands of the porphyrins are shown. The first point of the titration corresponds to pure ZnTPP (8.0×10^{-5} M, blue curve); the last point corresponds to a total addition of 21 equivs mPyPA (orange line). The formation of the assembly is accompanied by marked red shift of the absorption bands.

Figure S4 Association constant fitting using Matlab for the titration in Fig. S3.
Determination of association constants
Association constants were calculated by curve fitting on three wavelengths (547, 562 and 601 nm) with different constraints:
1. Two association constants per wavelength.
2. Two overall association constants, fitted on all wavelengths simultaneously.
3. One overall association constant, fitted on all wavelengths simultaneously.

For the titration data shown in Figs S1 and S3, only the last constraint yielded values for the association constants (K_{a1} and K_{a2}) and absorptivities ($\varepsilon_{HG,547\text{nm}}$, $\varepsilon_{HG,562\text{nm}}$, $\varepsilon_{HG,601\text{nm}}$, $\varepsilon_{HHG,547\text{nm}}$, $\varepsilon_{HHG,562\text{nm}}$, $\varepsilon_{HHG,601\text{nm}}$) that matched the expected values, namely K in the order of 10^3-10^4 M$^{-1}$, and $\varepsilon_{HHG} \approx 2\varepsilon_{HG}$ for 562 and 601 nm.

Model:
$2\cdot K_{a1} = [HG]/([H]*[G])$
$0.5\cdot K_{a2} = [HHG]/([HG]*[H])$

The implemented procedure is as follows (H is host (ZnTPP) and G is guest):
- Make initial guesses for K and ε
- Minimize the following routine using fminsearch and initial guesses:
 - Calculate $[H]$, $[HG]$ and $[HHG]$ iteratively:
 1. Calculate $[HG]$ from $[HHG]$ using:
 $u = [H]_0 - 2\cdot [HHG]$
 $v = [G]_0 - [HHG]$
 $[HG] = \frac{2\cdot K(u + v) + 1 - \sqrt{(2\cdot K(u + v) + 1)^2 - 16\cdot uvK^2}}{4\cdot K}$
 2. Calculate $[HHG]$ from $[HG]$ using:
 $[HHG] = \frac{0.5\cdot K[H][HG][H]_0 - [HG]}{1 + K[HG]}$
 3. Calculate $[H]$ from $[HG]$ and $[HHG]$ using:
 $[HG] = [H]_0 - [HG] - 2\cdot [HHG]$
 4. If the three concentrations have not converged to constant values, go back to 1.
 - Calculate the expected absorption using K, ε, $[H]$, $[HG]$ and $[HHG]$
 - Calculate compound error (expected absorption – observed absorption) for all three wavelengths
- Minimization returns new values for K and ε
- If minimization has converged, return K and ε. Otherwise, minimize again using new values for K and ε as initial guesses

Results:

<table>
<thead>
<tr>
<th>Guest G:</th>
<th>0.5K_{a2}</th>
<th>547 nm</th>
<th>562 nm</th>
<th>601 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9498</td>
<td>862</td>
<td>0</td>
<td>2197</td>
</tr>
<tr>
<td>mPyPA</td>
<td>8625</td>
<td>1446</td>
<td>0</td>
<td>4110</td>
</tr>
</tbody>
</table>
Figure S5 Luminescence spectra for the titration of ZnTPP with 2 in DCM. Excitation is at 555 nm, i.e., the isosbestic point seen during the UV-vis titration of the same solutions. The first point of the titration corresponds to pure ZnTPP (8.8·10^-5 M, pink curve); the last point corresponds to a total addition of 2.4 equivs of 2 (violet line).

NMR spectroscopy

δ, ppm

140.5 ppm

187.5 ppm

187.5 ppm

186.1 ppm

S8
Figure S6 31P NMR spectra of the supramolecular ligand mPyPA and its complexes 2, 4 and 5 in CDCl$_3$.
Electrochemistry

Note: voltammograms for compounds 1 to 4 referenced to Ag/Ag⁺. A correction factor of –0.41V was used to convert to Fe/Fe⁺.

Figure S7 Cyclic voltammetry of 1 (1.0 mM) in butyronitrile containing 0.1 M nBu₄NPF₆ with increasing acetic acid concentration: 0 (green), 1, 2, 3, 4, 5, 6, and 7 mM. Conditions: 293 K, static mercury drop working electrode, scan rate of 0.1 V s⁻¹.

Figure S8 Cyclic voltammetry of 2 (1.0 mM) in butyronitrile containing 0.1 M nBu₄NPF₆ with increasing acetic acid concentration: 0 (green), 1, 2, 4, 5, 6, and 7 mM. Conditions: 293 K, static mercury drop working electrode, scan rate of 0.1 V s⁻¹.
Figure S9 Cyclic voltammetry of 3 (1.0 mM) in butyronitrile containing 0.1 M \(nBu_4NPF_6 \) with increasing acetic acid concentration: 0 (green), 1, 2, 3, 4, 5, 6, and 7 mM. Conditions: 293 K, static mercury drop working electrode, scan rate of 0.1 V s\(^{-1}\).

Figure S10 Cyclic voltammetry for 4 (1.0 mM) in butyronitrile containing 0.1 M \((nBu)_4NPF_6 \) with increasing acetic acid concentration: 0 (green), 1, 2, 3, 4, 5, 6, and 7 mM. Conditions: 293 K, static mercury drop working electrode, scan rate 0.1 V s\(^{-1}\).
Figure S11 Comparison of cyclic voltammograms of 2 and 4 (1.0 mM) in butyronitrile containing 0.1 M (nBu)₄NPF₆. Conditions: static mercury drop working electrode, scan rate of 0.1 V s⁻¹.

Figure S12 Observed rate constant vs. acetic acid concentration (detailed zoom from Fig. 4) with curve fits (dashed).
Figure S13 Peak current vs square root of scan rate for compound 2 (2.0 mM) in butyronitrile containing 0.1 M \((nBu)₄NPF₆\). Conditions: *static mercury drop* working electrode, scan rate of 0.05, 0.1, 0.2, 0.5, 1.0, 2.0 and 5.0 V s\(^{-1}\).

Figure S14 Peak current vs square root of scan rate for compound 2 (2.0 mM) in butyronitrile containing 0.1 M \((nBu)₄NPF₆\). Conditions: *platinum microdisc* working electrode, scan rate of 0.05, 0.1, 0.2, 0.5, 1.0, 2.0 and 5.0 V s\(^{-1}\).
Table S1 Peak and catalytic currents and observed rate constants calculated by the method of Dubois:

\[
\frac{i_{\text{cat}}}{i_{\text{pc2}}} = n \frac{RT \cdot k_{\text{obs}}}{P \nu}\]

<table>
<thead>
<tr>
<th>Compound</th>
<th>eq. AcOH</th>
<th>(i_{\text{cat}}) [µA]</th>
<th>(k_{\text{obs}}) [s(^{-1})]</th>
<th>(i_{\text{cat}}) [µA]</th>
<th>(k_{\text{obs}}) [s(^{-1})]</th>
<th>(i_{\text{cat}}) [µA]</th>
<th>(k_{\text{obs}}) [s(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.80</td>
<td>44.2</td>
<td>1.04</td>
<td>138</td>
<td>1.07</td>
<td>11.3</td>
<td>0.95</td>
</tr>
<tr>
<td>3</td>
<td>1.33</td>
<td>122</td>
<td>1.50</td>
<td>22.3</td>
<td>1.56</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.75</td>
<td>212</td>
<td>2.78</td>
<td>986</td>
<td>1.90</td>
<td>35.7</td>
<td>2.24</td>
</tr>
<tr>
<td>5</td>
<td>2.23</td>
<td>343</td>
<td>3.78</td>
<td>1820</td>
<td>2.41</td>
<td>57.5</td>
<td>2.99</td>
</tr>
<tr>
<td>6</td>
<td>2.49</td>
<td>428</td>
<td>5.31</td>
<td>3600</td>
<td>2.96</td>
<td>86.7</td>
<td>3.91</td>
</tr>
<tr>
<td>7</td>
<td>2.89</td>
<td>577</td>
<td>7.05</td>
<td>6340</td>
<td>3.67</td>
<td>133</td>
<td>4.90</td>
</tr>
</tbody>
</table>

Table S2 Fitting parameters and quality (P = phosphine, PA = phosphoramidite)

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Substituent</th>
<th>(k')</th>
<th>n</th>
<th>Fit R(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P</td>
<td>4-Pyridyl</td>
<td>17.8</td>
<td>1.79</td>
</tr>
<tr>
<td>2</td>
<td>PA</td>
<td>3-Pyridyl</td>
<td>6</td>
<td>3.58</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>Phenyl</td>
<td>1.44</td>
<td>2.31</td>
</tr>
<tr>
<td>4</td>
<td>PA</td>
<td>Phenyl</td>
<td>0.934</td>
<td>2.845</td>
</tr>
</tbody>
</table>
Infrared spectroscopy

Figure S15 IR spectrum of the hexacarbonyl precursor, [Fe₂(μ-pdt)(CO)₆], and the monosubstituted complex 2 in toluene.

Figure S16 IR spectra of monosubstituted 2 and disubstituted 5 in dichloromethane.
Spectroelectrochemistry

Figure S17 IR spectroelectrochemistry of 2 in butyronitrile: in absence of current (red); on the reduction wave (blue line) and after a single cycle of reduction and re-oxidation, in absence and presence of free phosphoramidite, mPyPA (yellow and green curves, respectively).

IR spectroelectrochemistry, carried out in the absence of a proton donor, indicates that 2 is not recovered after a cycle of reduction and re-oxidation; the deconvolution of the resulting spectrum reveals, instead, that the \([\text{Fe}_2(\mu{-}\text{pdt})(\text{CO})_6]\) complex and the disubstituted species, 5, (binding two phosphoramidite ligands) were formed. This indicates that 2 disproportionates under electrochemical conditions at the cathode, in line with the behaviour of 1 observed during photocatalysis.\(^5\) However, when performing the spectroelectrochemistry measurement in presence of the free phosphoramidite ligand, compound 2 is regenerated after one cycle of reduction and re-oxidation, accompanied with some 5; however, no sign of the \([\text{Fe}_2(\mu{-}\text{pdt})(\text{CO})_6]\) complex was observed. The IR spectrum recorded at the reduction wave (blue), shows some residual 2 (likely due to incomplete reduction) and mainly the disubstituted complex, 5.
References