Diiron hexacarbonyl complexes as potential CO-RMs: their CO-releasing initiated by
the substitution reaction with cysteamine and structural correlation to the bridging
linkage

Xiujuan Jianga, Li Longa, Hailong Wanga, Limei Chenb, Xiaoming Liua, b*

aCollege of Biological, Chemical Sciences and Engineering
Jiaxing University
Jiaxing 314001, China

bSchool of Metallurgy and Chemical Engineering
Jiangxi University of Science and Technology
Jiangxi 341000, China

Email: xiaoming.liu@mail.zjxu.edu.cn

Tel. / Fax: +86 (0)573 83643937
Fig. S1 Infrared spectral variation during the CO-releasing process of complex 3 ([3] = 0.011 mol L\(^{-1}\) and [CysA] = 0.066 mol L\(^{-1}\)) (top) and the intermediates in the reaction mixture (bottom), when the reaction proceeded from 1 min to 7 min in
DMSO at 37 °C.

Fig. S2 Infrared spectral variation during the CO-releasing process of complex 4 ([4] = 0.011 mol L\(^{-1}\) and [CysA] = 0.066 mol L\(^{-1}\)) (top) and the intermediates in the
reaction mixture (bottom), when the reaction proceeded for 1 min (4-1), 3 min (4-2) and 7 min (4-3), respectively, in DMSO at 37 °C.

Fig. S3 Infrared spectral variation during the CO-releasing process of complex 7 ([7]
= 0.011 mol L\(^{-1}\) and \([\text{CysA}] = 0.066\) mol L\(^{-1}\) (top) and the intermediates in the reaction mixture (bottom), when the reaction proceeded for 260 min (7-1) and 320 min (7-2), respectively, in DMSO at 37 °C.

Fig. S4 Infrared spectral variation during the CO-releasing process of complex 8 ([8]
= 0.011 mol L\(^{-1}\) and [CysA] = 0.066 mol L\(^{-1}\)) (top) and the intermediates in the reaction mixture (bottom), when the reaction proceeded for 260 min (8-1) and 320 min (8-2), respectively, in DMSO at 37 °C.

Fig. S5 Infrared spectral variation during the CO-releasing process of complex 9 ([9]
= 0.011 mol L\(^{-1}\) and \([\text{CysA}] = 0.066 \text{ mol L}^{-1}\) (top) and the intermediates in the reaction mixture (bottom), when the reaction proceeded for 70 min (9-1) and 235 min (9-2), respectively, in DMSO at 37 °C.

Fig. S6 \(^1\)H NMR spectra of the final decomposition product for complex 4 (CD\(_3\)Cl).
Fig. S7 13C NMR spectra of the final decomposition product for complex 4 (CD$_3$Cl).

Fig. S8 Mass spectra of the final decomposition product for complex 4 (ESI, cation; the final decomposition product was obtained via the reaction of complex 4 with 6 equivalents of CysA under inert atmosphere at room temperature for 24 h).
Table S1 DFT calculation results and the k_{obs} of the compounds

<table>
<thead>
<tr>
<th>Complex</th>
<th>Metal centre</th>
<th>k_{obs}</th>
<th>NAP charges (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${\text{Fe}_2}$</td>
<td>0.806</td>
<td>-3.16876</td>
</tr>
<tr>
<td>2</td>
<td>${\text{Fe}_2}$</td>
<td>0.596</td>
<td>-3.16479</td>
</tr>
<tr>
<td>3</td>
<td>${\text{Fe}_2}$</td>
<td>0.537</td>
<td>-3.16032</td>
</tr>
<tr>
<td>4</td>
<td>${\text{Fe}_2}$</td>
<td>0.319</td>
<td>-3.20218</td>
</tr>
<tr>
<td>5</td>
<td>${\text{Fe}_2}$</td>
<td>0.108</td>
<td>-3.20754</td>
</tr>
<tr>
<td>6</td>
<td>${\text{Fe}_2}$</td>
<td>0.034</td>
<td>-3.27582</td>
</tr>
<tr>
<td>7</td>
<td>${\text{Fe}_2}$</td>
<td>0.026</td>
<td>-3.26473</td>
</tr>
<tr>
<td>8</td>
<td>${\text{Fe}_2}$</td>
<td>0.022</td>
<td>-3.25846</td>
</tr>
</tbody>
</table>

Scheme S1 Possible pathways of substitution-initiated CO-releasing from complex 4 by CysA under inert atmosphere 41.