Supporting Information for

A naphthalimide-based bifunctional fluorescent probe for the differential detection of Hg$^{2+}$ and Cu$^{2+}$ in aqueous solution

Chang-Bo Huang,a Hao-Ran Li,b Yuanyuan Luoc and Lin Xu*a

aDepartment of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China. E-mail: lxu@chem.ecnu.edu.cn
bFutian Second People’s Hospital, Shenzhen 518049, P. R. China.
cSchool of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China.

Contents:

1. Synthesis of model compounds NBM and NPP
2. The absorption and emissive properties of NPM on changing the pH
3. UV-Vis absorption spectra of NPM in the presence of various metal ions
4. The competitive experiments of Hg$^{2+}$ and Cu$^{2+}$ with the other ions
5. UV-Vis absorption titration spectra of NPM with Hg$^{2+}$ and Cu$^{2+}$
6. Hg$^{2+}$ and Cu$^{2+}$-titration and spectral responses
7. Fluorescence spectra of NPM, NBM, and NPP in the absence and presence of Hg$^{2+}$ and Cu$^{2+}$

1. Synthesis of model compounds NBM and NPP
Compound 1 was prepared according to our previously reported methods (*Dalton Trans.*, 2012, 41, 7212).

Compound 3. Anhydrous potassium carbonate (276 mg, 2 mmol), compounds 1 (337 mg, 1 mmol) and 1,3-bis(chloromethyl)benzene (1750 mg, 10 mmol) were dissolved in acetonitrile (10 mL), and the reaction mixture was refluxed for 12h under argon atmosphere. The mixture was filtered, and the solvent was removed in vacuum to give a yellow solid. The crude product was then chromatographed on silica gel using dichloromethane/methanol 50: 1 (v/v) as eluant to afford 409 mg (86%) 3 as yellow solid. 1H NMR (400 MHz, CDCl$_3$) δ 8.57 (dd, $J = 7.6$, 1.2 Hz, 1H), 8.50 (d, $J = 8.0$ Hz, 1H), 8.38 (d, $J = 8.4$ Hz, 1H), 7.68 (dd, $J = 8.3$, 7.4 Hz, 1H), 7.44 (s, 1H), 7.41 – 7.31 (m, 3H), 7.21 (d, $J = 8.1$ Hz, 1H), 4.62 (s, 2H), 4.16 (t, $J = 8.0$ Hz, 2H), 3.71 (s, 2H), 3.33 (s, 4H), 2.83 (s, 4H), 1.73 – 1.66 (m, 2H), 1.48 – 1.39 (m, 2H), 0.96 (t, $J = 8.0$ Hz, 3H). 13C NMR (CDCl$_3$, 100 MHz) δ: 164.50, 164.03, 137.76, 132.53, 131.09, 129.83, 129.49, 128.94, 127.86, 126.13, 125.69, 123.31, 116.89, 115.03, 62.63, 53.07, 52.76, 46.20, 40.11, 30.27, 20.43, 13.92. EI-MS for C$_{28}$H$_{30}$ClN$_3$O$_2$ [M$^+$]: 475. HR-ESI-MS calcd for C$_{28}$H$_{31}$ClN$_3$O$_2$ [(M + H)$^+$]: 476.2009, found: 476.2114.

Compound NBM. Anhydrous potassium carbonate (138 mg, 1.0 mmol), compounds 3 (238 mg, 0.5 mmol) and morpholine (218 mg, 2.5 mmol) were dissolved in acetonitrile (8 mL), and the reaction mixture was refluxed for 12 h under argon atmosphere. The mixture was filtered, and the solvent was removed in a vacuum to give a yellow solid. The crude product was then chromatographed on silica gel using dichloromethane–methanol 40: 1 (v/v) as eluant to afford 205 mg (78%) NBM as a yellow solid. 1H NMR (400 MHz, CDCl$_3$) δ 8.50 (d, $J = 7.2$ Hz, 1H), 8.43 (d, $J = 8.0$ Hz, 1H), 8.33 (d, $J = 8.4$ Hz, 1H), 7.65 – 7.57 (m, 1H), 7.31 (s, 1H), 7.28 - 7.23 (m, 3H), 7.14 (d, $J = 8.0$ Hz, 1H), 4.13 – 4.09 (m, 2H), 3.70 – 3.68 (m, 4H), 3.62 (s, 2H), 3.49 (s, 2H),
3.25 (s, 4H), 2.74 (s, 4H), 2.43 (s, 4H), 1.69 – 1.61 (m, 2H), 1.44 – 1.35 (m, 2H), 0.92 (t, J = 7.6 Hz, 3H). 13C NMR (CDCl$_3$, 100 MHz) δ: 164.44, 163.98, 155.93, 137.74, 137.62, 132.50, 131.00, 130.23, 130.07, 129.80, 128.31, 128.17, 126.07, 125.56, 123.23, 116.63, 114.86, 66.93, 63.37, 62.96, 53.59, 53.15, 53.02, 40.06, 30.26, 20.42, 13.92. ESI-MS for C$_{32}$H$_{39}$N$_4$O$_3$ [(M + H)$^+$]: 527.49. HR-ESI-MS calcd for C$_{32}$H$_{39}$N$_4$O$_3$ [(M + H)$^+$]: 527.3017, found: 527.3069.

Scheme S2 Synthesis of NPP

Compound 2 was prepared according to our previously reported methods (Dalton Trans., 2012, 41, 7212).

Compound NPP. Anhydrous potassium carbonate (138 mg, 1.0 mmol), compounds 2 (238 mg, 0.5 mmol) and piperidine (213 mg, 2.5 mmol) were dissolved in acetonitrile (8 mL), and the reaction mixture was refluxed for 12 h under argon atmosphere. The mixture was filtered, and the solvent was removed in a vacuum to give a yellow solid. The crude product was then chromatographed on silica gel using dichloromethane–methanol 30 : 1 (v/v) as eluant to afford 181 mg (69%) NPP as a yellow solid. 1H NMR (400 MHz, CDCl$_3$) δ 8.58 – 8.51 (m, 1H), 8.48 (d, J = 8.0 Hz, 1H), 8.40 – 8.33 (m, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.65 (dd, J = 8.0, 7.6 Hz, 2H), 7.44 (d, J = 7.6 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 4.13 (t, J = 7.6 Hz, 2H), 3.97 (s, 2H), 3.80 (s, 2H), 3.30 (s, 4H), 2.82 (s, 8H), 1.82 (s, 4H), 1.71 – 1.63 (m, 2H), 1.53 (s, 2H), 1.46 – 1.35 (m, 2H), 0.94 (t, J = 7.6 Hz, 3H). 13C NMR (CDCl$_3$, 100 MHz) δ: 164.48, 164.02, 158.05, 155.84, 137.57, 132.50, 131.05, 130.21, 129.83, 126.12, 125.63, 123.57, 123.28, 122.72, 116.78, 114.92, 64.32, 63.43, 53.96, 53.36, 52.98, 50.69, 40.08, 30.25, 29.69, 24.18, 23.07, 20.40, 13.88. ESI-MS calcd for C$_{32}$H$_{40}$N$_4$O$_2$ [(M + H)$^+$]: 526.31, found: 526.51. HR-ESI-MS calcd for C$_{32}$H$_{40}$N$_4$O$_2$ [(M + H)$^+$]: 526.3177, found: 526.3197.

2. The absorption and emissive properties of NPM on changing the pH
Fig. S1. The influence of pH on the absorption (a) and fluorescence (b, c) of NPM (10 µM) in water. Inset: (a, left) absorption intensity as a function of pH value, (a, right) wavelength of maximum absorption as a function of pH value. Excitation was performed at 405 nm. Slits were 2.5, 5 nm.

3. UV-Vis absorption spectra of NPM in the presence of various metal ions
Fig. S2. UV-Vis absorption spectra (a) and absorption intensity (b) of NPM (10 μM) in the presence of various metal ions (20 μM) in aqueous solution (10 mM HEPES, pH 7.5).
4. The competitive experiments of Hg$^{2+}$ and Cu$^{2+}$ with the other ions

![Graph showing fluorescent intensity at 529 nm](image)

Fig. S3 The fluorescent intensity at 529 nm of NPM (10 μM) upon the addition of (a) Hg$^{2+}$ (20 μM) and (b) Cu$^{2+}$ (20 μM) in the presence of background metal ions (20 μM) in aqueous solution (10 mM HEPES, pH 7.5). $\lambda_{ex} = 405$ nm.
5. UV-Vis absorption titration spectra of NPM with Hg$^{2+}$ and Cu$^{2+}$
Fig. S4 UV-Vis absorption spectra of NPM (10 µM) upon addition of (a) Hg²⁺ (2–20 µM) and (c) Hg²⁺ (1–20 µM) in aqueous solution (10 mM HEPES, pH 7.5). The curves of absorption of NPM (10 µM) versus increasing concentrations of Hg²⁺ (b) and Cu²⁺ (d).
6. Hg$^{2+}$ and Cu$^{2+}$-titration and spectral responses

![Graph a) Hg$^{2+}$ titration and spectral response](image)

![Graph b) Hg$^{2+}$ titration and spectral response](image)

![Graph c) Cu$^{2+}$ titration and spectral response](image)
Fig. S5 Curve of corrected fluorescence intensity at 529 nm of NPM (10 μM) versus increasing concentrations of Hg\(^{2+}\) (a, b) and Cu\(^{2+}\) (c, d), respectively. (λ\(_{ex}\) = 405 nm)

8. Fluorescence spectra of NPM, NBM, and NPP in the absence and presence of Hg\(^{2+}\) and Cu\(^{2+}\)

Fig. S6 Fluorescence spectra of NPM, NBM, and NPP (all compounds were 10 μM) in the absence and presence of Hg\(^{2+}\) (20 μM) and Cu\(^{2+}\) (20 μM) in aqueous solution (10 mM HEPES, pH 7.5). λ\(_{ex}\) = 405 nm.