Supporting Information for

4-Pyridyl-substituted azacycloalkanes with multiple donor sites prepared via a solvent-free, one-pot method for use in electrocatalysts

B. K. Breedlove,* R. Kandel, H. Md. Ahsan and M. Yamashita

Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan.

Experimental

Reagents: All reagents were purchased from TCI (Tokyo, Japan) and used without further purification. Solvents were purchased from Wako and used without further purification. Triruthenium clusters used in this study were prepared as previously reported.

Analytical Methods: ¹H NMR spectra were recorded on a Bruker AV500 and referenced to internal tetramethylsilane. Mass spectra were acquired on a Waters Xevo G2 Q-TOF spectrometer equipped with an electrospray ionization (ESI) probe. Cyclic voltammetry was performed using an ALS/HCH Model 620D Electrochemical Analyzer with a glassy carbon working electrode, Ag/Ag⁺ reference electrode, and a Pt-wire auxiliary electrode. The supporting electrolyte was 0.1 M ⁿBu₄N(PF₆) in CH₃CN, and scan rate was 100 mV/s. Concentrations of samples were 1 mM for [{Ru₃}₂L1](PF₆)₂ and 0.05 mM for [{Ru₃}₄L2](PF₆)₄, which was due to its lower solubility. For the CO₂ experiment, dry CO₂ was slowly bubbled into the solution for 10 min, which should be enough to saturate the solution.

For X-ray single crystal structure analysis, single crystals of the compounds were mounted on a glass loop rod with Paratone-N (Hampton Research). Data collection was performed on a Rigaku Varimax diffractometer equipped with a Saturn724 CCD detector using graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) in a N₂ stream. An empirical absorption correction based on azimuthal scans of several reflections was applied. The data were corrected for Lorentz and polarization effects. All non-hydrogen atoms were refined anisotropically using a least-squares method, and hydrogen atoms were fixed at calculated positions and refined using a riding model. SHELXTL was used for structure refinement. Full-matrix least-square refinement of F^2 using unique reflections with unweighted and weighted agreement factors of $R = ||F_0| - |F_c||/|F_0|$ ($I > 2.00 \sigma(I)$) and w $R = [w(F_0^2 - F_c^2)^2/w(F_0^2)^2]^{1/2}$. In the checkcif file for L1, the Level A and B errors are due to disorder in the solvent molecules as well as the disordered unsubstituted aza N atoms. Since we make no quantitative arguments using the atoms involved, we believe that these errors can be ignored, and the structure is useable in qualitative arguments and discussion.

Synthesis of 1,7-tetra(4-pyridyl)-1,4,7,10-tetraazacyclododecane (L1): To a Schlenk tube were added 1,4,7,10-tetraazacyclododecane tetrahydrochloride (1.0 g, 3.1 mmol) and 1-(4-pyridyl)pyridinium chloride hydrochloride hydrate (>3 equiv.) and the two solids were mixed with a spatula. The tube was degassed by repeated cycles of evacuation and refilling with N₂. The Schlenk tube was then placed into an oil bath at 170 °C for 3 h, during which time the pyridinium salt melted. The tube was allowed to cool, and the pH was adjusted to >11 by adding 6 M aqueous NaOH. A reflux condenser was attached to the Schlenk tube, and the solution was refluxed for 2 h. The solution was extracted four times with CHCl₃ (100 mL), and the extracts were dried over Na₂SO₄. The solvent was removed on a rotary evaporator, and the residue was purified by recrystallization from CH₂Cl₂/hexane. Yield: 196 mg (19.3%). ¹H NMR (CDCl₃): δ 8.18 (m, 4H, H ortho to N_{py}), 6.41 (m, 4H, H meta to N_{py}), 3.54 (m, 8H, CH₂ next to N_{aza}py), 2.88 (m, 8H, CH₂ next to N_{aza}). ¹³C NMR (CDCl₃): δ 152.78, 149.91, 107.20, 54.33, 48.97. ESI-MS: m/z = 327.2042 ([M+H]⁺). Elemental Anal. Calcd. for C₁₈H₂₆N₆·1/2H₂O·1/4CH₂Cl₂: C, 61.63; H, 7.93; N, 23.80%; Found: H, 61.45; H, 7.77; N, 23.56%.

Synthesis of 1,4,7,10-tetra(4-pyridyl)-1,4,7,10-tetraazacyclododecane (L2): L2 was

prepared using the same method. However, a larger excess of the pyridinium salt (~6 equiv) was mixed with 1,4,7,10-tetraazacyclododecane tetrahydrochloride (1.0 g, 3.1 mmol). Yield: 95 mg (9.4%). ¹H NMR (CDCl₃): δ 8.34 (m, 8H, H ortho to N_{py}), 6.49 (m, 8H, H meta to N_{py}), 3.50 (m, 16H, C<u>H</u>₂). ¹³C NMR (CD₃OD): δ 156.02, 150.51, 109.93, 52.88. ESI-MS: *m/z* = 481.31 ([M+H]⁺). Elemental Anal. Calcd. for C₂₈H₃₂N₈·1/4CH₂Cl₂·1/4H₂O: C, 64.330; H, 6.440; N, 21.060%; Found: H, 64.085; H, 6.331; N, 21.010%.

Synthesis of 1,4-di(4-pyridyl)-1,4,7-triazacyclononane (L3) and

1,4,7-tri(4-pyridyl)-1,4,7-triazacyclononane (L4): Both **L3** and **L4** were synthesized using the same method as that for **L1** except that 4 equiv. of the pyridinium was used 1,4,7-triazacyclononane trihydrochloride (1.0 g, 4.2 mmol). In addition, the obtained mixture of **L3** and **L4** were purified by fractional crystallization from CH₂Cl₂/hexane.

L3: Yield: 220 mg (18.5%). ¹H NMR (CDCl₃): δ 8.24 (m, 4H, H ortho to N_{py}), 6.49 (m, 4H, H meta to N_{py}), 3.74 (s, 12H, C<u>H</u>₂ between N_{aza}py), 3.38 (m, 4H, C<u>H</u>₂), 2.95 (m, 4H, C<u>H</u>₂ next to N_{aza}H). ¹³C NMR (CDCl₃): δ 152.62, 150.11, 107.16, 53.99, 50.49, 46.95. ESI-MS: m/z = 284.1873 ([M+H]⁺); calcd m/z = 284.1875. Elemental Anal. Calcd. for C₁₆H₂₁N₅: C, 67.86; H, 7.47; N, 24.71%; Found: H, 67.71; H, 7.50; N, 24.38%. L4: Yield: 240 mg (15.9%). ¹H NMR (CDCl₃): δ 8.21 (m, 6H, H ortho to N_{py}), 6.39 (m, 6H, H meta to N_{py}), 3.61 (s, 12H, C<u>H</u>₂). ¹³C NMR (CDCl₃): δ 152.56, 150.40, 107.45, 50.22. ESI-MS: m/z = 361.2138 ([M+H]⁺). Elemental Anal. Calcd. for C₂₁H₂₄N₆·2.6H₂O: C, 61.93; H, 7.23; N, 20.63%; Found: H, 61.70; H, 7.14; N, 20.61%.

Preparation of [{Ru₃}₂L1](PF₆)₂ and [{Ru₃}₄L2](PF₆)₄: Both complexes were prepared by adding a solution of the respective linker (40 mg in both cases) in CH₂Cl₂ (5 mL) to a solution of [Ru₃(\mu_3-O)(\mu-O₂CCH₃)₆(dmap)₂(CH₃OH)](PF₆) (L1: 291.5 mg, 0.268 mmol; L2: (378.2 mg, 0.35 mmol) (dmap = N,N-dimethylaminopyridine). The solutions were allowed to stir for 18 and 48 h, respectively, and then the solvent was removed on a rotary evaporator. The complexes were recrystallized from CH₂Cl₂/hexane and then purified using size-exclusion column chromatography over BioBeads S-X1 with CH₂Cl₂ as the eluent.

[{**Ru**₃}₂**L1**](**PF**₆)₂: Yield: 180 mg (59.8%). ESI-MS: m/z 1081.57 ([M]²⁺). Elem. Anal. Calcd for Ru₆C₇₀H₁₀₂F₁₂N₁₄O₂₆P₂: C, 34.29; H, 4.19; N, 8.00%; Found: C, 34.43; H, 4.52; N, 7.8%. [{**Ru**₃}₄**L2**](**PF**₆)₄: Yield: 159 mg (40.3%). ESI-MS: m/z = 1038.0278 ([M]⁴⁺); calcd m/z = 1038.0281.

ESI-MS detection of Ag(I) complex of $[{Ru_3}_4L2]^{4+}$: To a solution of $[{Ru_3}_4L2](PF_6)_4$ (4 mg, mmol) in CH₃CN (10 mL) was added AgNO₃ (1 mg, mmol). As soon as the AgNO₃ completely dissolved, 1 mL of the solution was diluted 20-fold, and the dilute solution was injected into ESI mass spectrometer. A peak envelope was observed centered at *m*/*z* 859.14 with five peaks per mass unit, which indicates that the molecule has a +5 charge (see Figure S6).

Figure S1. ¹H NMR spectrum of L1 in CDCl₃. Spectrum was referenced to TMS.

Figure S2. ¹³C NMR spectrum of L1 in CDCl₃.

Figure S3. ¹H NMR spectrum of L2 in CDCl₃. Spectrum was referenced to TMS.

Figure S5. ¹H NMR spectrum of **L3** in CDCl₃. Spectrum was referenced to TMS. Peaks marked with (*) correspond to a small amount of **L4**.

Figure S6. ¹³C NMR spectrum of L3 in CDCl₃. Peaks labeled with * correspond to a small amount of L4.

Figure S7. ¹H NMR spectrum of L4 in CDCl₃. Spectrum was referenced to TMS.

5				
	L1	L2	L3	L4
Formula	$C_{54}H_{94}N_{18}O_8$	$C_{28}H_{32}N_8$	$C_{16}H_{20}N_5$	$C_{21}H_{26}N_6O$
Mr	1123.47	480.62	282.37	378.46
Crystal system	triclinic	monoclinic	monoclinic	orthorhombic
Space group	$P\overline{1}$	$P2_{1}/a$	$P2_{1}/c$	Pbca
Temperature (K)	93	103	293	293
<i>a</i> (Å)	8.923(2)	8.456(3)	6.906(4)	10.277(5)
<i>b</i> (Å)	12.881(3)	15.508(5)	7.641(4)	14.718(5)
<i>c</i> (Å)	13.548(3)	9.731(3)	26.901(14)	25.634(5)
α (deg)	78.191(9)			
β (deg)	79.149(8)	108.424(4)	79.149(8)	90
γ (deg)	75.802(8)			
$V(\text{\AA}^3)$	1461.9(6)	1210.7(6)	1419.5(13)	3877(2)
Ζ	1	2	4	8
$ ho_{ m calcd} ({ m g \ cm^{-3}})$	1.276	1.318	1.321	1.290
Reflections	10377	9543	10842	20253
collected				
Unique	5502	2699	3140	2491
reflections				
Reflections with	4172	2235	2065	2150
$F^2 > 2\sigma(F^2)$				
$R_1 (F^2 > 2\sigma(F^2))$	0.0637	0.0395	0.0500	0.0264
wR_2 (all data)	0.1916	0.1126	0.1669	0.0694
GOF	1.104	1.095	0.978	1.025
CCDC	960768	960767	960765	960766

 Table S1. Crystal Data for L1–L4.

Figure S9. ORTEP diagrams of (a) L4 and (b) L2. N atoms are in blue, and C atoms in grey.

Figure S10. Cyclic voltammograms of $[{Ru_3}_4L2]^{4+}$ and Ni(II) ions under N₂ and CO₂. Working electrode: glassy carbon; reference electrode: Ag/Ag+; auxiliary electrode: Pt wire; 0.1 M nBu₄NPF₆; scan rate, 100 mV/s.

Figure S11. ESI mass spectrum of [{Ru₃}₄L2Ag(CH₃CN)]⁵⁺.