Supporting Information

for the paper

Synthesis and characterisation of the complete series of B–N analogues of triptycene

Ömer Seven, Sebastian Popp, Michael Bolte, Hans-Wolfram Lerner, Matthias Wagner*

Institut für Anorganische Chemie, J.W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt (Main), Germany. E-mail: <u>Matthias.Wagner@chemie.uni-frankfurt.de</u>

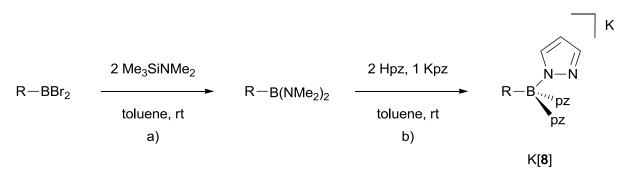
Content:

1) Syntheses of 3c, 3d, 3e, K[8] (R = *p*-Me₃SiC₆H₄; *p*-IC₆H₄), 14c and 14d

2) Plots of the ${}^{13}C{}^{1}H$ NMR spectra of 3a, 3c, 3d, [4a]Br, [4c]Br, [4e]Br, 14b, 14c and 14d

3) Decomposition experiments of 3b, [4a]Br and [4b]Br in CD₃OD and [4d]Br in CH₃OH

4) X-ray crystal structure analyses of 3c, 3d, 3e, 3f·OEt₂ and 12a


1) Syntheses of 3c, 3d, 3e, K[8] (R = *p*-Me₃SiC₆H₄; *p*-IC₆H₄), 14c and 14d

Synthesis of 3c. A Schlenk flask was charged with Li₂[**7**]·OEt₂ (25 mg, 0.13 mmol) and 3,5dimethylpyrazole (25 mg, 0.26 mmol). Et₂O (15 mL) was added at rt with stirring, whereupon vigorous gas evolution (H₂) was observed, which lasted for approximately 2 min. After 30 min, neat Me₃SiCl (0.1 mL, 0.08 g, 0.8 mmol) was added to the colourless solution to give a white suspension. Stirring was continued for 12 h, the formed LiCl was removed by filtration and the filtrate was evaporated under vacuum to yield a colourless solid. Single crystals were grown by gas-phase diffusion of cyclohexane into a solution of **3c** in C₆H₆. Yield: 27 mg (71%). ¹H NMR (400.1 MHz, C₆D₆): $\delta = 7.99$ -7.93 (2 H, m, H-3,6), 7.32-7.28 (2 H, m, H-4,5), 5.19 (2 H, s, pzH-4), 4.70 (2 H, br q, BH), 2.06 (12 H, s, Me); ¹³C{¹H} NMR (75.4 MHz, C₆D₆): $\delta = 143.0$ (pzC-3,5), 130.3 (C-3,6), 126.0 (C-4,5), 105.1 (pzC-4), 11.4 (Me), n.o. (CB); ¹¹B NMR (96.3 MHz, C₆D₆): $\delta = -7.0$ (d, ¹*J*_{B,H} = 98 Hz); ¹¹B{¹H} NMR (96.3 MHz, C₆D₆): $\delta = -7.0$ ($h_{1/2} = 120$ Hz); MS (ESI⁺): m/z 291.3 ([M + H]⁺, 100%); HRMS (MALDI-TOF): m/z = 291.19474 ([M + H]⁺, calcd 291.19468).

Synthesis of 3d. A solution of 3,5-di(*tert*-butyl)pyrazole (47 mg, 0.26 mmol) in Et₂O (10 mL) was added dropwise with stirring at rt to a solution of Li₂[7]·OEt₂ (25 mg, 0.13 mmol) in Et₂O (10 mL); the reaction proceeds with evolution of H₂. After 30 min, neat Me₃SiCl (0.1 mL, 0.08 g, 0.8 mmol) was added to the clear colourless solution to give a white suspension. Stirring was continued for 12 h, the formed LiCl was removed by filtration and the filtrate was evaporated under vacuum to yield a colourless solid. Single crystals were obtained as colourless plates by slow evaporation of a solution of 3d in Et₂O. Yield: 51 mg (85%). ¹H NMR (500.2 MHz, C₆D₆): δ = 7.81-7.77 (2 H, m, H-3,6), 7.27-7.23 (2 H, m, H-4,5), 5.88 (2 H, s, pzH-4), 5.32 (2 H, br, BH), 1.44 (36 H, s, *t*Bu); ¹³C{¹H} NMR (125.8 MHz, C₆D₆): δ = 156.8 (pzC-3,5), 129.4 (C-3,6), 125.7 (C-4,5), 102.1 (pzC-4), 32.3 (*C*(CH₃)₃), 30.6 (CH₃), n.o. (CB); ¹¹B NMR (160.5 MHz, C₆D₆): δ = -4.0 ($h_{1/2}$ = 350 Hz); MS (ESI⁺): m/z 459.5 ([M + H]⁺, 100%); HRMS (MALDI-TOF): m/z = 459.38367 ([M + H]⁺, calcd 459.38248).

Synthesis of 3e. A Schlenk flask was charged with $\text{Li}_2[7] \cdot \text{OEt}_2$ (40 mg, 0.21 mmol) and 3,5bis(trifluoromethyl)pyrazole (85 mg, 0.42 mmol). Et₂O (10 mL) was added at rt with stirring, whereupon vigorous gas evolution (H₂) was observed, which lasted for approximately 2 min. After 30 min, neat Me₃SiCl (0.1 mL, 0.08 g, 0.8 mmol) was added to the colourless solution to give a white suspension. Stirring was continued for 15 h, the formed LiCl was removed by filtration and the filtrate was evaporated under vacuum to yield a colourless solid. Single crystals were obtained as colourless plates by slow evaporation of a solution of **3e** in C₆H₆. Yield: 80 mg (76%). (Found: C, 37.74; H, 1.59; N, 10.85. Calc. for C₁₆H₈B₂F₁₂N₄ [505.86]: C, 37.99; H, 1.59; N, 11.08%); ¹H NMR (500.2 MHz, C₆D₆): δ = 7.77-7.74 (2 H, m, H-3,6), 7.14-7.10 (2 H, m, H-4,5), 5.63 (2 H, s, pzH-4), 4.93 (2 H, br, BH); ¹³C{¹H} NMR (75.4 MHz, C₆D₆): δ = 137.7 (q, ²*J*_{C,F} = 42.2 Hz, pzC-3,5), 131.4 (C-3,6), 127.9 (C-4,5) 118.8 (q, ¹*J*_{C,F} = 270.8 Hz, CF₃), 106.4 (pzC-4), n.o. (CB); ¹¹B{¹H} NMR (160.5 MHz, C₆D₆): δ = -3.7 ($h_{1/2}$ = 290 Hz).

Syntheses of K[8] ($\mathbf{R} = p$ -Me₃SiC₆H₄; *p*-IC₆H₄). The potassium tris(pyrazol-1-yl)borate salts K[HBpz₃]^{1S} and K[*p*-BrC₆H₄Bpz₃]^{2S} were synthesised according to published procedures. The syntheses of K[*p*-Me₃SiC₆H₄Bpz₃] and K[*p*-IC₆H₄Bpz₃] were performed as outlined in Scheme 1S; detailed protocols are given below. The sodium salt Na[*p*-IC₆H₄Bpz₃] is literature known.^{3S}

Scheme 1S: Syntheses of K[8] (R = p-Me₃SiC₆H₄ or p-IC₆H₄; Hpz = pyrazole).

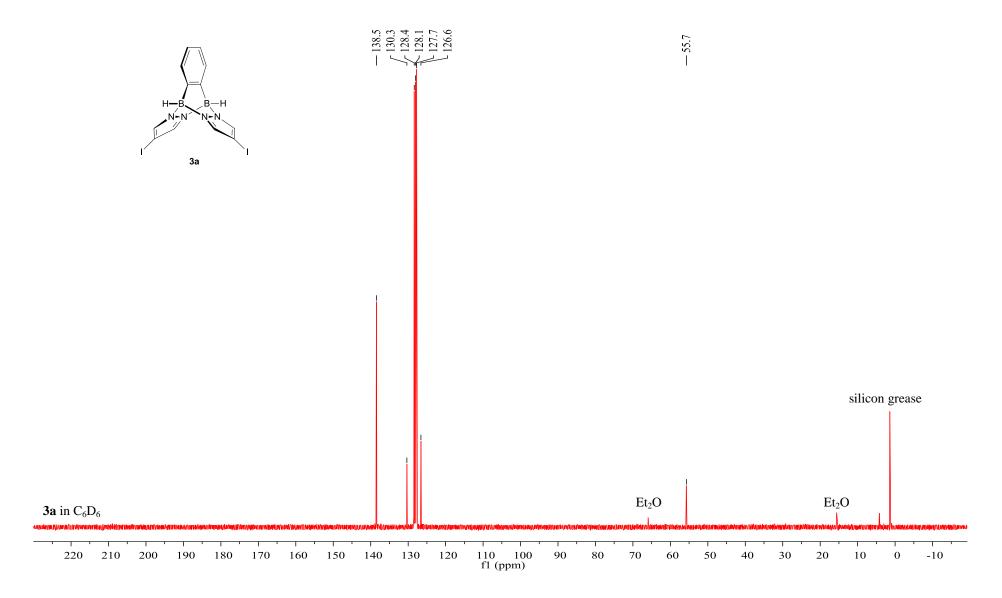
Step a)

Synthesis of *p*-Me₃SiC₆H₄B(NMe₂)₂. Neat Me₃SiNMe₂ (6.9 mL, 5.1 g, 44 mmol) was added dropwise with stirring at rt to a solution of *p*-Me₃SiC₆H₄BBr₂^{4S} (7.0 g, 22 mmol) in toluene (10 mL); stirring was continued for 2.5 h. All volatiles were removed under reduced pressure to afford *p*-Me₃SiC₆H₄B(NMe₂)₂ as a brown oil, which was used without further purification. Yield: 3.8 g (70%). ¹H NMR (400.1 MHz, C₆D₆): δ = 7.59 (2 H, d, ³*J*_{H,H} = 8.0 Hz, ArH), 7.51 (2 H, d, ³*J*_{H,H} = 8.0 Hz, ArH), 2.61 (12 H, s, NMe₂), 0.27 (9 H, s, SiMe₃); ¹³C{¹H} NMR (75.4 MHz, C₆D₆): δ = 139.3 (CSi), 133.4 (ArC), 133.0 (ArC), 41.2 (NMe₂), -0.9 (SiMe₃), n.o. (CB); ¹¹B NMR (128.4 MHz, C₆D₆): δ = 32.8 (*h*_{1/2} = 240 Hz); ²⁹Si INEPT NMR (99.4 MHz, C₆D₆): δ = -4.9.

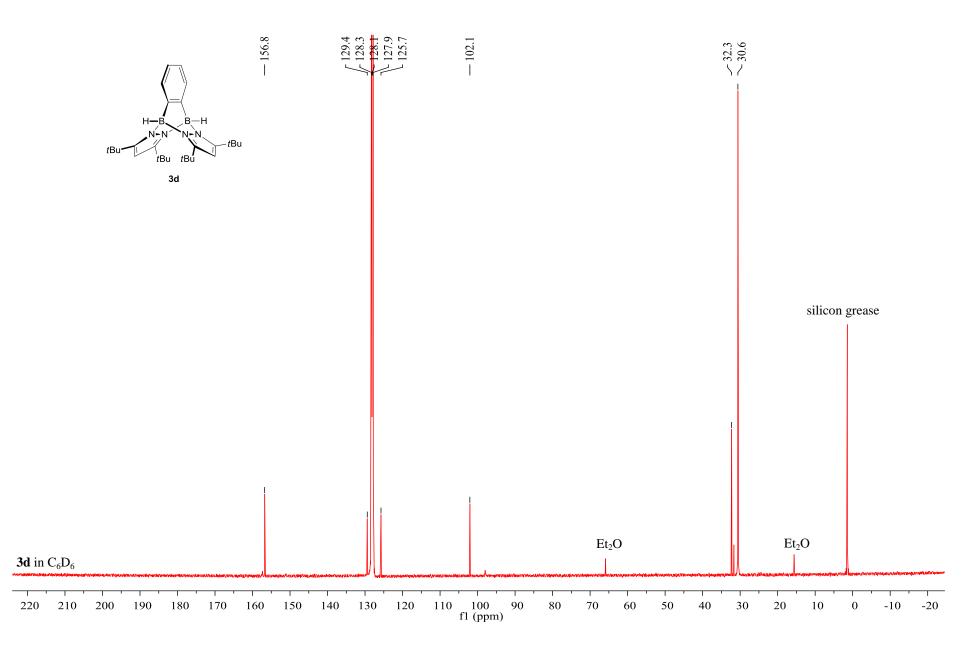
Synthesis of *p*-IC₆H₄B(NMe₂)₂. The compound was synthesised according to the protocol described above for *p*-Me₃SiC₆H₄B(NMe₂)₂ from Me₃SiNMe₂ (1.8 mL, 1.3 g, 11 mmol) and *p*-IC₆H₄BBr₂^{3S} (2.1 g, 5.6 mmol). Yield: 1.6 g (94%). ¹H NMR (300.0 MHz, C₆D₆): δ = 7.61 (2 H, d, ³J_{H,H} = 8.2 Hz, ArH), 6.95 (2 H, d, ³J_{H,H} = 8.2 Hz, ArH), 2.48 (12 H, s, NMe₂); ¹³C{¹H} NMR (75.4 MHz, C₆D₆): δ = 137.1 (ArC), 135.8 (ArC), 94.5 (CI), 40.9 (NMe₂), n.o. (CB); ¹¹B NMR (96.3 MHz, C₆D₆): δ = 32.3 (*h*_{1/2} = 130 Hz).

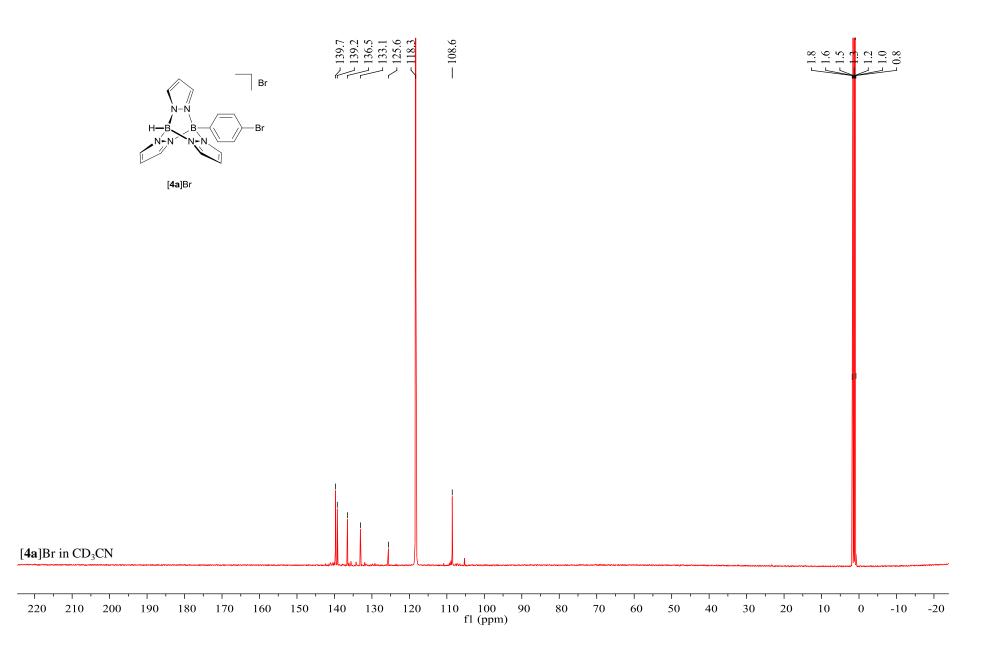
Step b)

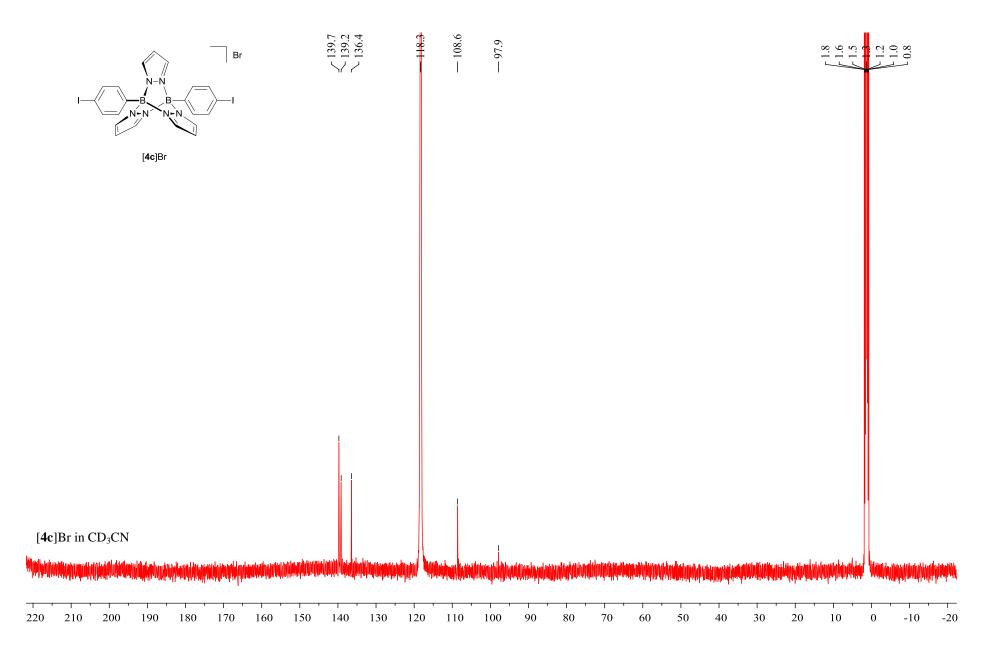
Synthesis of K[*p***-Me₃SiC₆H₄Bpz₃].** *p***-Me₃SiC₆H₄B(NMe₂)₂ (2.68 g, 10.8 mmol), Hpz (1.47 g, 21.6 mmol) and Kpz (1.15 g, 10.8 mmol) were suspended in toluene (20 mL). The suspension was stirred for 24 h at rt, whereupon the potassium tris(pyrazol-1-yl)borate gradually precipitated. The colourless precipitate was collected on a frit, washed with toluene (6 × 5 mL) and** *n***-pentane (6 × 5 mL) and dried under reduced pressure. Yield: 3.5 g (81%). ¹H NMR (500.2 MHz,** *d***₈-THF): \delta = 7.43 (3 H, d, ³***J***_{H,H} = 1.0 Hz, pzH-3 or pzH-5), 7.34 (3 H, d, ³***J***_{H,H} = 2.0 Hz, pzH-3 or pzH-5), 7.32 (2 H, d, ³***J***_{H,H} = 8.0 Hz, ArH), 6.93 (2 H, d, ³***J***_{H,H} = 8.0 Hz, ArH), 5.99 (3 H, vtr, pzH-4), 0.23 (9 H, s, SiMe₃); ¹³C{¹H} NMR (125.8 MHz,** *d***₈-THF): \delta = 139.4 (pzC-3 or pzC-5), 137.5 (CSi), 135.9 (pzC-3 or pzC-5), 134.5 (ArC), 132.4 (ArC), 103.0 (pzC-4), -0.8 (SiMe₃), n.o. (CB); ¹¹B{¹H} NMR (160.5 MHz,** *d***₈-THF): \delta = 1.7 (***h***_{1/2} = 130 Hz); ²⁹Si INEPT NMR (99.4 MHz,** *d***₈-THF): \delta = -5.3; MS (ESΓ):** *m***/***z* **361.3 ([M - K]⁻, 100%); MS (ESI⁺):** *m***/***z* **439.3 ([M + K]⁺, 100%).**

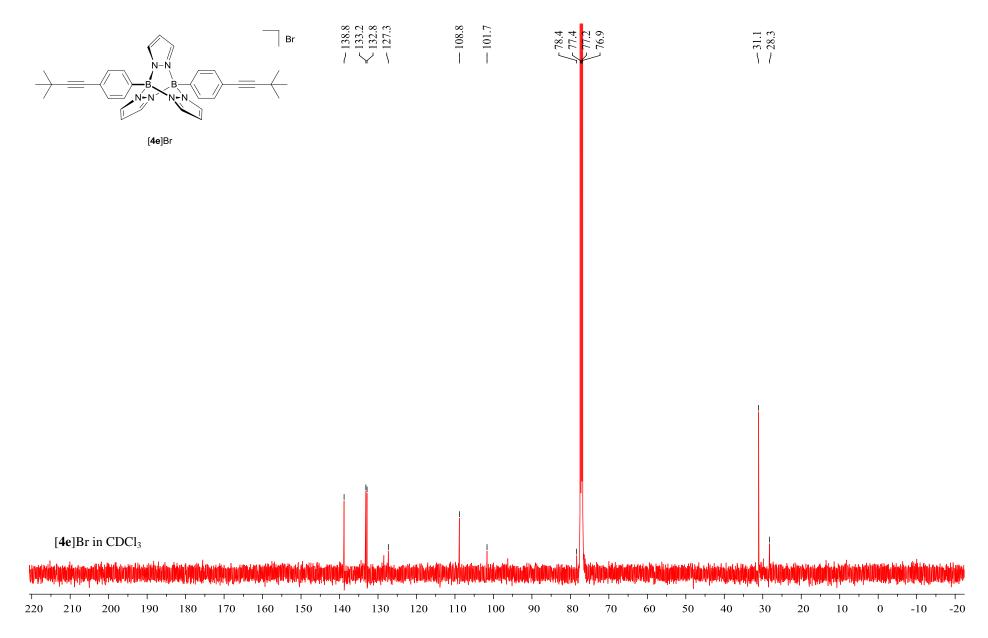

Synthesis of K[*p*-IC₆H₄Bpz₃]. The compound was synthesised according to the protocol described above for K[*p*-Me₃SiC₆H₄Bpz₃] from *p*-IC₆H₄B(NMe₂)₂ (3.15 g, 10.4 mmol), Hpz (1.42 g, 20.9 mmol) and Kpz (1.11 g, 10.5 mmol). Yield: 4.1 g (87%). ¹H NMR (500.2 MHz, d_8 -THF): $\delta = 7.47$ (2 H, d, ${}^3J_{\text{H,H}} = 8.0$ Hz, ArH), 7.44 (3 H, n.r., pzH-3 or pzH-5), 7.33 (3 H, d, ${}^3J_{\text{H,H}} = 2.0$ Hz, pzH-3 or pzH-5), 6.70 (2 H, d, ${}^3J_{\text{H,H}} = 8.0$ Hz, ArH), 6.00 (3 H, vtr, pzH-4); 13 C{¹H} NMR (125.8 MHz, d_8 -THF): $\delta = 139.5$ (pzC-3 or pzC-5), 137.3 (ArC), 136.4 (ArC), 135.8 (pzC-3 or pzC-5), 103.2 (pzC-4), 93.0 (CI), n.o. (CB); ¹¹B NMR (96.3 MHz, d_8 -THF): $\delta = 1.5$ ($h_{1/2} = 90$ Hz).

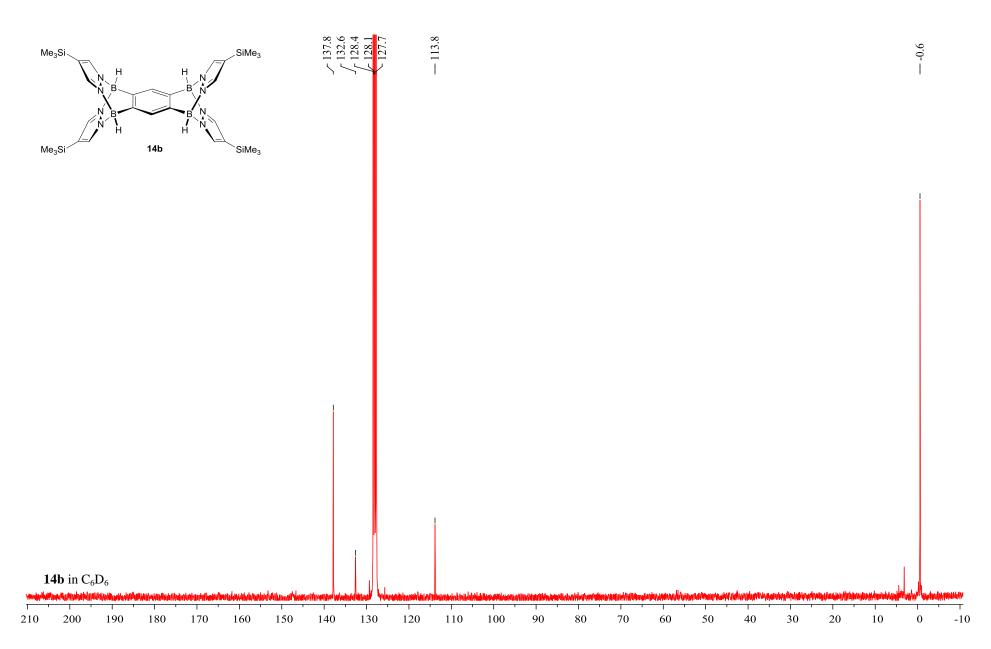
The NMR data of K[*p*-IC₆H₄Bpz₃] are in agreement with those of Na[*p*-IC₆H₄Bpz₃].^{3S}

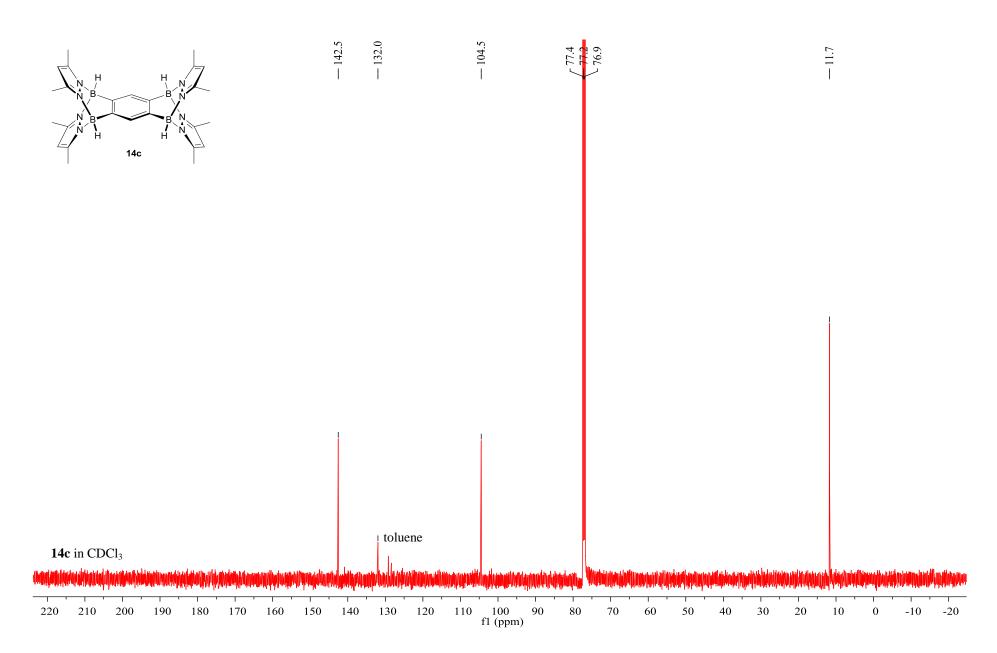

- 1S S. Trofimenko, J. Am. Chem. Soc., 1967, 89, 3170–3177.
- 2S J. Zagermann, M. C. Kuchta, K. Merz and N. Metzler-Nolte, *Eur. J. Inorg. Chem.*, 2009, 5407–5412.
- 3S D. L. Reger, J. R. Gardinier, M. D. Smith, A. M. Shahin, G. J. Long, L. Rebbouh and F. Grandjean, *Inorg. Chem.*, 2005, 44, 1852–1866.
- 4S D. Kaufmann, *Chem. Ber.*, 1987, **120**, 901–905.

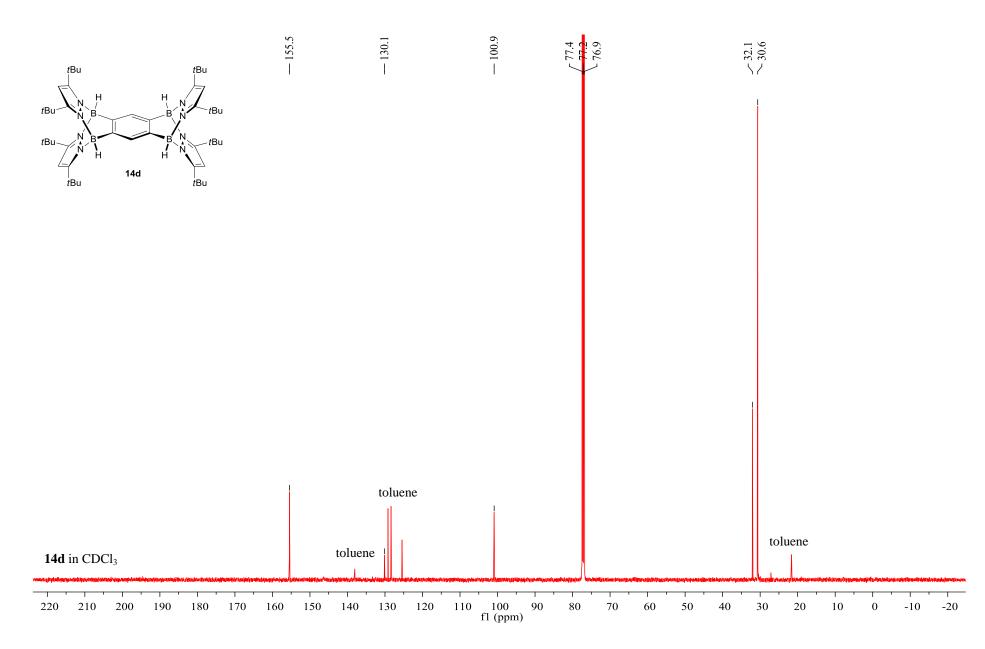

Synthesis of 14c. A Schlenk flask was charged with Li₄[**13**]·3thf (50 mg, 0.13 mmol) and 3,5dimethylpyrazole (51 mg, 0.53 mmol). Toluene (30 mL) was added at rt with stirring, whereupon a gas (H₂) evolved. After 10 min, neat Me₃SiCl (0.1 mL, 0.08 g, 0.8 mmol) was added to the colourless suspension and stirring was continued for 5 d. All insolubles were collected on a frit, washed with toluene (2 × 5 mL) and dried under vacuum to obtain a mixture of **14c** and LiCl. **14c** is insoluble in hexane, C₆H₆, toluene, and Et₂O; it is only sparingly soluble in THF, CHCl₃, and CH₂Cl₂. The solid mixture of **14c** and LiCl was washed with H₂O (2 × 5 mL) and pentane (2 × 5 mL) and dried under vacuum (12 h). Yield: 47 mg (70%). ¹H NMR (500.2 MHz, CDCl₃): δ = 7.70 (2 H, s, H-3,6), 5.51 (4 H, s, pzH-4), 4.30* (4 H, br, BH), 2.27 (24 H, s, Me); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): δ = 142.5 (pzC-3,5), 132.0 (C-3,6), 104.5 (pzC-4), 11.7 (Me), n.o. (CB); ¹¹B NMR (96.3 MHz, CDCl₃): δ = -7.0 (br, $h_{1/2}$ = 500 Hz); ¹¹B{¹H} NMR (96.3 MHz, CDCl₃): δ = -7.0 ($h_{1/2}$ = 400 Hz); MS (ESI⁺): m/z 502.9 ([M + H]⁺, 100%); HRMS (MALDI-TOF): m/z = 503.33414 ([M + H]⁺, calcd 503.33683). *This signal sharpens upon ¹¹B decoupling.

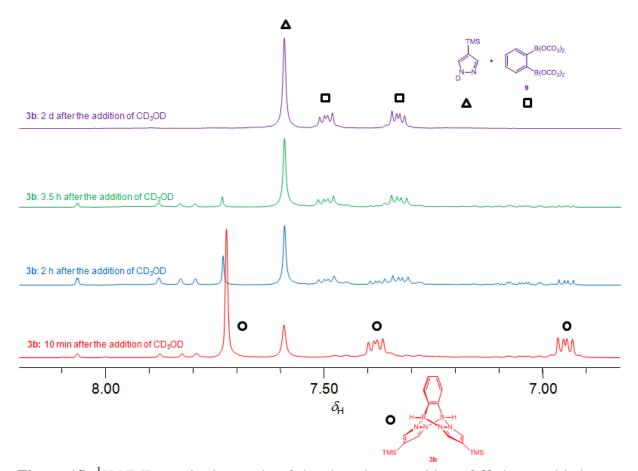

Synthesis of 14d. A glass ampoule was charged with Li₄[**13**]·3thf (50 mg, 0.13 mmol), 3,5di(*tert*-butyl)pyrazole (94 mg, 0.52 mmol), and toluene (20 mL). Neat Me₃SiCl (0.1 mL, 0.08 g, 0.8 mmol) was added to the colourless suspension. The ampoule was sealed under vacuum and stored at 80 °C for 7 d. The ampoule was opened at rt, all insolubles were collected on a frit, washed with toluene (2 × 5 mL), and dried under vacuum to obtain a mixture of **14d** and LiCl. **14d** is insoluble in hexane, C₆H₆, toluene, and Et₂O; it is only sparingly soluble in THF, CHCl₃, and CH₂Cl₂. The solid mixture of **14d** and LiCl was washed with H₂O (2 × 5 mL) and pentane (2 × 5 mL) and dried under vacuum (12 h). Yield: 77 mg (69%). ¹H NMR (500.2 MHz, CDCl₃): δ = 7.35 (2 H, s, H-3,6), 5.65 (4 H, s, pzH-4), 4.85* (4 H, br, BH), 1.41 (72 H, s, *t*Bu); ¹³C{¹H} NMR (125.8 MHz, CDCl₃): δ = 155.5 (pzC-3,5), 130.1 (C-3,6), 100.9 (pzC-4), 32.1 (*C*(CH₃)₃), 30.6 (CH₃), n.o. (CB); ¹¹B{¹H} NMR (96.3 MHz, CDCl₃): δ = -3.5 ($h_{1/2}$ = 800 Hz); MS (ESI⁺): m/z 845.5 ([M + Li]⁺, 100%), m/z 839.5 ([M + H]⁺, 71%); HRMS (MALDI-TOF): m/z = 838.70550 ([M]⁺, calcd 838.70580). *This signal sharpens upon ¹¹B decoupling. 2) Plots of the ¹³C{¹H} NMR spectra of 3a, 3c, 3d, [4a]Br, [4c]Br, [4e]Br, 14b, 14c and 14d

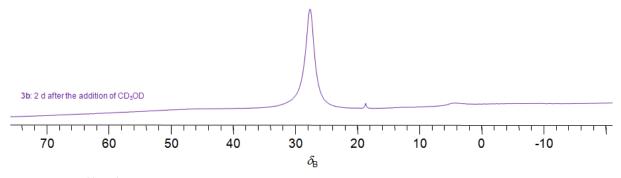


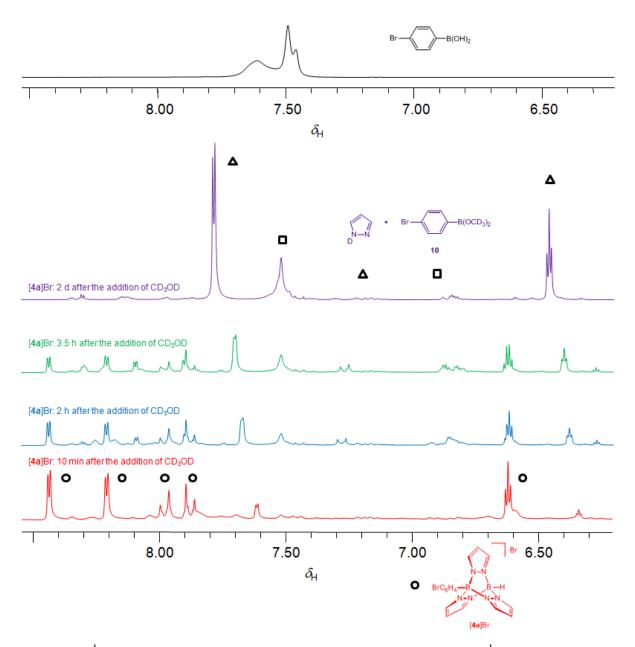


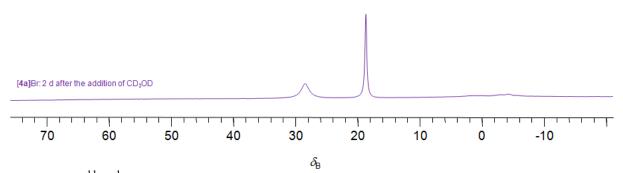


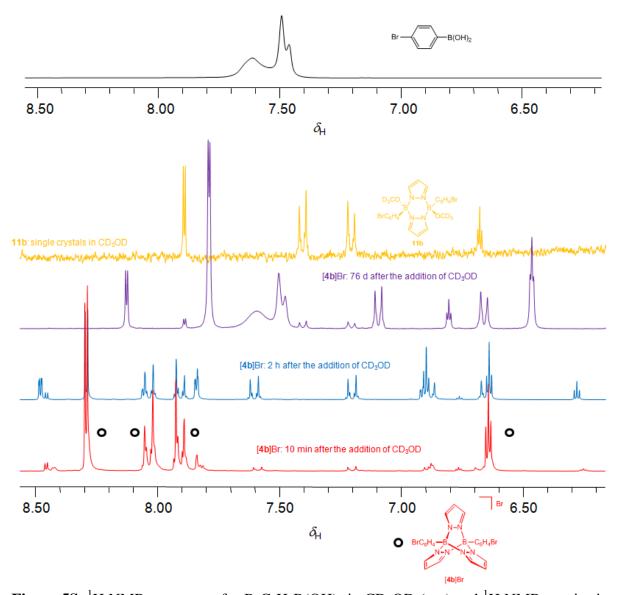


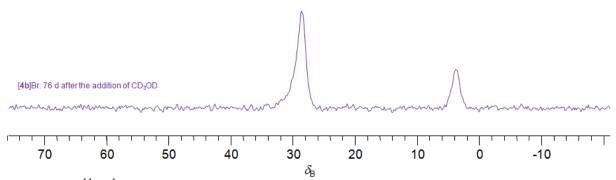





3) Decomposition experiments of 3b, [4a]Br and [4b]Br in CD₃OD and [4d]Br in CH₃OH


Figure 1S: ¹H NMR monitoring study of the slow decomposition of **3b** in non-dried, non-degassed CD_3OD (note: for simplicity reasons, the decomposition product has been drawn as CD_3OD ester, even though the corresponding boronic acid or mixed acid/ester species may well be present, too).


Figure 2S: ¹¹B{¹H} NMR spectrum of the decomposition mixture resulting from **3b** 2 d after the addition of CD_3OD .


Figure 3S: ¹H NMR spectrum of p-BrC₆H₄B(OH)₂ in CD₃OD (top) and ¹H NMR monitoring study of the slow decomposition of [**4a**]Br in non-dried, non-degassed CD₃OD (bottom; note: for simplicity reasons, the decomposition product has been drawn as CD₃OD ester, even though the corresponding boronic acid or mixed acid/ester species may well be present, too).

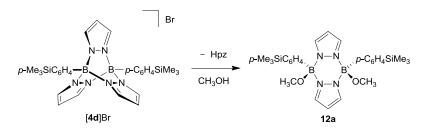
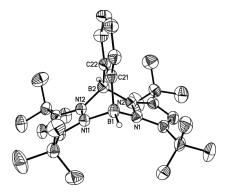

Figure 4S: ¹¹B{¹H} NMR spectrum of the decomposition mixture resulting from [**4a**]Br 2 d after the addition of CD_3OD .

Figure 5S: ¹H NMR spectrum of p-BrC₆H₄B(OH)₂ in CD₃OD (top) and ¹H NMR monitoring study of the slow decomposition of [**4b**]Br in non-dried, non-degassed CD₃OD (bottom; note: for simplicity reasons, the decomposition products have been drawn as CD₃OD esters, even though the corresponding boronic acid or mixed acid/ester species may well be present, too).

Figure 6S: ¹¹B{¹H} NMR spectrum of the decomposition mixture resulting from [**4b**]Br 76 d after the addition of CD_3OD .



Scheme 2S: Decomposition of [4d]Br in CH₃OH leads to single crystals of 12a.

4) X-ray crystal structure analyses of 3c, 3d, 3e, 3f·OEt₂ and 12a

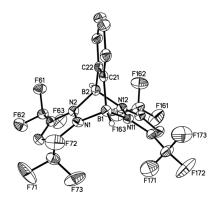


Figure 7S: Molecular structure of **3c** in the solid state. Hydrogen atoms except on boron have been omitted for clarity; displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths (Å), atom…atom distance (Å), bond angles (°) and dihedral angles (°): B(1)–N(1) 1.577(4), B(1)–N(11) 1.573(4), B(1)–C(21) 1.611(4), B(2)–N(2) 1.585(4), B(2)–N(12) 1.580(4), B(2)–C(22) 1.607(4), B(1)…B(2) 2.687(5); N(1)–B(1)–N(11) 101.9(2), N(1)–B(1)–C(21) 105.8(2), N(11)–B(1)–C(21) 105.4(2), N(2)–B(2)–N(12) 102.2(2), N(2)–B(2)–C(22) 105.2(2), N(12)–B(2)–C(22) 105.3(2); N(1)B(1)N(11)//N(1)N(2)N(11)N(12) 48.9(2), N(2)B(2)N(12)//N(1)N(2)N(11)N(12) 47.6(2), pz(N(1)))//C₆H₄ 120.9(1), pz(N(11))//C₆H₄ 119.0(1), pz(N(1))//pz(N(11)) 120.0(1); pz(N(X)) = pyrazolyl ring containing N(X).

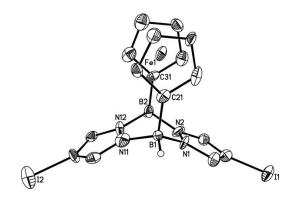


Figure 8S: Molecular structure of **3d** in the solid state. Hydrogen atoms except on boron have been omitted for clarity; displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths (Å), atom…atom distance (Å), bond angles (°) and dihedral angles (°): B(1)-N(1) 1.599(3), B(1)-N(11) 1.583(3), B(1)-C(21) 1.586(3), B(2)-N(2) 1.578(3), B(2)-N(12) 1.594(3), B(2)-C(22) 1.607(3), $B(1)\cdots B(2)$ 2.655(3); N(1)-B(1)-N(11) 104.3(2),

$$\begin{split} &N(1)-B(1)-C(21) \ 106.6(2), \ N(11)-B(1)-C(21) \ 104.8(2), \ N(2)-B(2)-N(12) \ 104.6(2), \\ &N(2)-B(2)-C(22) \ 105.3(2), \ N(12)-B(2)-C(22) \ 106.0(2); \\ &N(1)B(1)N(11)/(N(1)N(2)N(11)N(12) \ 48.1(2), \ N(2)B(2)N(12)/(N(1)N(2)N(11)N(12) \ 50.0(1), \\ &B(1)N(1)N(2)B(2)//B(1)N(11)N(12)B(2) \ 119.3(1), \ B(1)N(1)N(2)B(2)//B(1)C(21)C(22)B(2) \\ &120.6(1), \ B(1)N(11)N(12)B(2)//B(1)C(21)C(22)B(2) \ 120.0(1), \ pz(N(1))//C_6H_4 \ 108.3(1), \\ &pz(N(11))//C_6H_4 \ 109.0(1), \ pz(N(1))//pz(N(11)) \ 141.3(1); \ pz(N(X)) = \ pyrazolyl \ ring \\ &containing N(X). \end{split}$$

Figure 9S: Molecular structure of **3e** in the solid state. Hydrogen atoms except on boron have been omitted for clarity; displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths (Å), atom…atom distance (Å), bond angles (°) and dihedral angles (°): $B(1)-N(1) \ 1.594(4)$, $B(1)-N(11) \ 1.609(4)$, $B(1)-C(21) \ 1.603(4)$, $B(2)-N(2) \ 1.599(4)$, $B(2)-N(12) \ 1.586(4)$, $B(2)-C(22) \ 1.587(5)$, $B(1)-B(2) \ 2.707(5)$; $N(1)-B(1)-N(11) \ 99.5(2)$, $N(1)-B(1)-C(21) \ 104.8(2)$, $N(11)-B(1)-C(21) \ 106.1(2)$, $N(2)-B(2)-N(12) \ 99.8(2)$, $N(2)-B(2)-C(22) \ 106.0(2)$, $N(12)-B(2)-C(22) \ 105.8(2)$; $N(1)B(1)N(11)/N(1)N(2)N(11)N(12) \ 49.1(2)$, $N(2)B(2)N(12)//N(1)N(2)N(11)N(12) \ 48.8(2)$, $pz(N(1))//C_6H_4 \ 121.1(1)$, $pz(N(11))//C_6H_4 \ 122.6(1)$, $pz(N(1))//pz(N(11)) \ 116.2(1)$; pz(N(X)) = pyrazolyl ring containing N(X).

Figure 10S: Molecular structure of $3f \cdot OEt_2$ in the solid state. Hydrogen atoms except on boron and the OEt_2 molecule have been omitted for clarity; displacement ellipsoids are drawn at the 50% probability level. The bond lengths and bond angles are not given due to poor crystallographic data, which lead to large error margins.

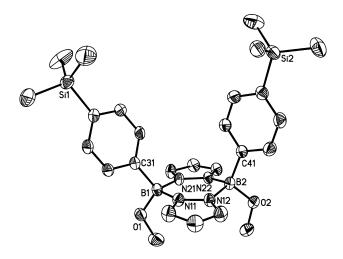


Figure 11S: Molecular structure of 12a in the solid state. Hydrogen atoms have been omitted for clarity; displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths (Å), atom…atom distances (Å), bond angles (°) and dihedral angles (°): B(1)-O(1) 1.432(3), B(1)-N(11) 1.592(3), B(1)-N(21) 1.586(3), B(1)-C(31) 1.609(3),B(2)-O(2) 1.426(3), B(2)-N(12) 1.588(3), B(2)-N(22) 1.578(3), B(2)-C(41) 1.611(3),B(1)...B(2) 3.272(4), COG(Ar(C(31)))...COG(Ar(C(41))) 6.074; N(11)-B(1)-N(21) 104.9(2),N(12)-B(2)-N(22) 104.7(2); N(11)B(1)N(21)//N(12)B(2)N(22) 13.4(2),N(11)B(1)N(21)//N(11)N(12)N(21)N(22) 1.6(1), N(12)B(2)N(22)//N(11)N(12)N(21)N(22)14.6(2), B(1)N(11)N(12)B(2)//B(1)N(21)N(22)B(2) 169.8(2), pz(N(11))//pz(N(21)) 171.4(1),Ar(C(31))//Ar(C(41)) 70.91(9); pz(N(X)) = pyrazolyl ring containing N(X); Ar(C(X)) = arylring containing C(X); COG(Ar(C(X))) = centroid of the aryl ring containing C(X).

	3c	3d	3e
Formula	$C_{16}H_{20}B_2N_4$	$C_{28}H_{44}B_2N_4$	$C_{16}H_8B_2F_{12}N_4\\$
$M_{ m r}$	289.98	458.29	505.88
Colour, shape	Colourless, plate	Colourless, plate	Colourless, plate
<i>T</i> [K]	173(2)	173(2)	173(2)
Radiation, λ [Å]	ΜοΚα, 0.71073	ΜοΚα, 0.71073	ΜοΚα, 0.71073
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	<i>P</i> -1	$P2_{1}/n$	$P2_{1}/n$
<i>a</i> [Å]	7.9633(10)	10.6013(7)	9.6394(8)
<i>b</i> [Å]	8.5150(11)	9.5489(6)	15.7965(13)
<i>c</i> [Å]	12.6954(17)	28.2614(17)	12.9452(12)
<i>α</i> [°]	71.470(10)	90	90
eta[°]	81.729(11)	99.567(5)	101.491(7)
γ[°]	77.430(10)	90	90
V [Å ³]	794.05(19)	2821.1(3)	1931.6(3)
Ζ	2	4	4
$D_{\rm calcd} [{ m g \ cm}^{-3}]$	1.213	1.079	1.740
<i>F</i> (000)	308	1000	1000
μ [mm ⁻¹]	0.073	0.063	0.186
Crystal size [mm ³]	$0.20 \times 0.20 \times 0.05$	$0.18 \times 0.13 \times 0.07$	$0.20\times0.20\times0.10$
Rflns collected	8359	20700	29995
Independent rflns (R_{int})	2787 (0.0571)	5184 (0.0888)	3832 (0.1243)
Data/restraints/parameters	2787/0/211	5184/0/313	3832/0/315
GOF on F^2	1.239	0.923	1.155
$R_1, wR_2 [I > 2\sigma(I)]$	0.0648, 0.1601	0.0518, 0.1036	0.0755, 0.1265
R_1 , wR_2 (all data)	0.0823, 0.1655	0.0990, 0.1171	0.1027, 0.1371
Largest diff. peak	0.227, -0.256	0.209, -0.218	0.289, -0.256
and hole [e $Å^{-3}$]			

 Table 1S: Crystallographic Data for 3c, 3d and 3e.

	$3\mathbf{f} \cdot \mathbf{OEt}_2$	12a
Formula	$\begin{array}{c} C_{16}H_{14}B_2FeI_2N_4\cdot\\ C_4H_{10}O\end{array}$	$C_{26}H_{38}B_2N_4O_2Si_2$
$M_{ m r}$	667.70	516.40
Colour, shape	Yellow, needle	Colourless, needle
<i>T</i> [K]	173(2)	173(2)
Radiation, λ [Å]	ΜοΚα, 0.71073	ΜοΚα, 0.71073
Crystal system	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> [Å]	11.061(3)	12.4434(10)
<i>b</i> [Å]	7.8312(14)	20.6663(13)
<i>c</i> [Å]	27.648(9)	12.4374(11)
<i>α</i> [°]	90	90
β [°]	98.73(2)	109.677(6)
γ[°]	90	90
V [Å ³]	2367.1(11)	3011.6(4)
Ζ	4	4
$D_{\text{calcd}} [\text{g cm}^{-3}]$	1.874	1.139
<i>F</i> (000)	1288	1104
$\mu [\mathrm{mm}^{-1}]$	3.265	0.146
Crystal size [mm ³]	$0.15 \times 0.01 \times 0.01$	$0.52 \times 0.10 \times 0.10$
Rflns collected	18238	20886
Independent rflns (R_{int})	4568 (0.2756)	5851 (0.0898)
Data/restraints/parameters	4568/162/271	5851/0/325
GOF on F^2	0.998	1.030
$R_1, wR_2 [I > 2\sigma(I)]$	0.1148, 0.1924	0.0777, 0.1489
R_1 , wR_2 (all data)	0.2363, 0.2362	0.0994, 0.1584
Largest diff. peak	1.165, -1.555	0.300, -0.326
and hole [e $Å^{-3}$]		

Table 2S: Crystallographic Data for $3f \cdot OEt_2$ and 12a.