Supporting Information to:

Cooperative effects in homogenous water oxidation catalysis by mononuclear ruthenium complexes

Yanyan Mulyana, F. Richard Keene and Leone Spiccia

School of Chemistry and Australian Centre of Excellence for Electromaterials Science, Monash University, Victoria 3800, Australia, email: leone.spiccia@monash.edu

School of Pharmacy & Molecular Sciences, James Cook University, Townsville, Queensland 4811, Australia

School of Chemistry and Physics, University of Adelaide, Adelaide, South Australia 5007, Australia

Figure S1. 1H NMR spectrum of [Ru(terpy)(bipy)Cl]Cl (1) in D$_2$O, showing the aquation of the complex to form [Ru(terpy)(bipy)(OD$_2$)]Cl$_2$; a = C6 proton of bipy in [Ru(terpy)(bipy)Cl]Cl (1); b = C6 proton of bipy in [Ru(terpy)(bipy)(OD$_2$)]Cl$_2$; c = other aromatic protons. Integration of the two C6 proton peaks indicates that the [Ru(terpy)(bipy)Cl]$^+$/[Ru(terpy)(bipy)(OD$_2$)]$^{2+}$ ratio was 2:1.
Figure S2. 1H NMR spectrum of [Ru(terpy)(Me$_2$bipy)Cl]Cl (2) in CD$_3$CN; a = C6 proton of Me$_2$bipy; b = other aromatic protons; c = methyl protons.
Figure S3. 1H NMR spectrum of [Ru(phen)$_2$(Me$_2$bipy)]Cl$_2$ (4) in CD$_3$CN; a = aromatic protons; b = methyl protons.
Figure S4. 1H NMR spectrum of 2/4 mixture in CD$_3$CN:HCIO$_4$ 0.1 M in D$_2$O (1:4); a = C6 proton of Me$_2$bipy in [Ru(terpy)(Me$_2$bipy)Cl]$^+$ with an apparent shoulder at 9.4 ppm due to the C6 proton of Me$_2$bipy of the aquation product [Ru(terpy)(Me$_2$bipy)(OD$_2$)]$^{2+}$; b = other aromatic protons; c = methyl protons.
Figure S5. 1H NMR spectrum of 2/4 mixture in CD$_3$CN:HClO$_4$ 0.1 M in D$_2$O (1:4) measured 10 minutes after four equivalent Ce$^{4+}$ was added showing the disappearance of the C6 proton.
Figure S6. 1H NMR spectrum of 2/4 mixture in CD$_3$CN:HCIO$_4$ 0.1 M in D$_2$O (1:4) measured 180 minutes after four equivalent Ce$^{4+}$ was added; a = C6 proton of Me$_2$bipy in the regenerated [Ru(terpy)(Me$_2$bipy)(OD$_2$)]$^{2+}$; b = other aromatic protons; c = methyl protons.