Electronic Supplementary Information

Syntheses and structural investigation of some alkali metal ion-mediated $\text{LV}^\text{V} \text{O}_2^-$ (L$_2^-$ = Tridentate ONO ligands) species: DNA binding, photo-induced DNA cleavage and cytotoxic activities

Subhashree P. Dash,a Alok K. Panda,b Sagarika Pasayat,a Rupam Dinda,a*a Ashis Biswas,b Edward R. T. Tieink,c Yogesh P. Patil,d M. Nethaji,d Werner Kaminsky,e Subhadip Mukhopadhyayf and Sujit K. Bhutiaf

aDepartment of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
bSchool of Basic Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar 751 013, Odisha, India.
cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
dDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
eDepartment of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
fDepartment of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
Table of Contents

Table S1 Summary of intermolecular interactions (A–H...B; Å, º) operating in the crystal structures of 3, 5-7.
Table S2 Binding Constant (Kb) values for the interaction of CT-DNA with ligands.
Fig. S1 51V NMR spectra of 1 in DMSO-d$_6$.
Fig. S2 Overlay diagram of the two independent complex anions in 3. Molecules have been superimposed so that the five-membered chelate rings involving the V1 (red image) and V2 (blue image) atoms are superimposed.
Fig. S3 (a) A view of the supramolecular layer in the ab-plane in 3 sustained by an extensive network of O–H...O hydrogen bonds shown as orange dashed lines. For clarity, only the chelate rings of the anions are illustrated, and (b) Unit cell contents for 3 viewed in projection down the b-axis. The O–H...O and C–H...O(hydoxy) hydrogen bonds are shown as orange and blue dashed lines, respectively.
Fig. S4 Overlay diagram of the two independent complex anions in 5. Molecules have been superimposed so that the C1-C6 ring (red image) and C16-C21 ring (blue image) are superimposed.
Fig. S5 (a) Crystal packing in 5: Layer in the ab-plane mediated by μ-O bridges. For clarity, only the chelate rings of the anions are illustrated, and (b) Unit cell contents for 5 viewed in projection down the b-axis. The O–H...O hydrogen bonds are shown as orange dashed lines.
Fig. S6 Crystal packing in 6: View in projection down the b-axis showing the unit cell contents. The O–H...O, O–H...N, C–H...O and C–H...π interactions are shown as orange, blue, green and purple dashed lines, respectively.
Fig. S7 Crystal packing in 7. (a) Layer in the ab-plane sustained by O–H...O and O–H...N hydrogen bonds shown as orange and blue dashed lines, respectively. For clarity, only the chelate rings of the anions are illustrated, and (b) Unit cell contents viewed in projection down the b-axis.
Fig. S8 Electronic absorption spectra of 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 8 (f) (25 µM each) upon the titration of CT-DNA (0 – 100 µM) in 10 mM Tris-HCl buffer (pH 8.0) containing 10% DMF. Arrow shows the changes in absorbance with respect to an increase in the CT-DNA concentration. The inset shows the linear fit of $[\text{DNA}]/(\epsilon_0 - \epsilon_f)$ vs [DNA] and binding constant (K_b) was calculated using Eq.1.
Fig. S9 Electronic absorption spectra of H$_2$L$_1$ (a), H$_2$L$_2$ (b), H$_2$L$_3$ (c), H$_2$L$_4$ (d), H$_2$L$_5$ (e) and H$_2$L$_6$ (f) (25 µM each) upon the titration of CT-DNA (0 – 350 µM) in 10 mM Tris-HCl buffer (pH 8.0) containing 10% DMF. The inset shows the linear fit of $[\text{DNA}]/(\epsilon_0 - \epsilon_f)$ vs [DNA] and binding constant (K_b) was calculated using Eq.1
Fig. S10 Derivative plot of thermal denaturation of CT-DNA (160 µM) in absence and presence of 1–8 (100 µM). The experiment was done in 10 mM Tris-HCl buffer (pH 8.0) containing 10% DMF. Inset shows the thermal denaturation derivative plot for 6 and 7 which showed ~ 2 ºC shift in T_m as compared to CT-DNA.
Fig. S11 Circular dichroism spectra of CT-DNA (160 µM) in the presence and absence of complexes in 10 mM Tris-HCl buffer (pH 8.0): 1 and 2 (a), 3 and 4 (b), 5 and 8 (c). The path length of the cuvette was 2 mm.
Fig. S12 (a) Gel diagram showing concentration dependent DNA cleavage by 1–8; 300 ng of SC pUC19 DNA at different concentrations of the complexes [1–500 µM in 10 mM Tris-HCl buffer (pH 8.0) containing 1% DMF] was photo-irradiated with UVA at 350 nm for 3 h. Lanes 1–9: 1, 2.5, 5.0, 7.5, 10, 50, 75, 100 and 500 µM of 1–8. (b) Concentration dependent DNA cleavage by 1–8; 300 ng of SC pUC19 DNA at different concentration of the complexes [1–500 µM in 10 mM Tris HCl buffer (pH 8.0) containing 1% DMF] was photo-irradiated with UVA at 350 nm for 3 h. The net DNA cleavage percent was calculated using Eq.2. Inset shows a bar diagram representation of the net DNA cleavage of different complexes at 10 and 100 µM.
Fig. S13 (a) Gel diagram showing concentration dependent DNA cleavage by 1–8; 300 ng of SC pUC19 DNA at different concentrations of the complexes [1–500 µM in 10 mM phosphate buffer (pH 7.8) containing 1% DMF] was photo-irradiated with UVA at 350 nm for 3 h. Lanes 1–9: 1, 2.5, 5.0, 7.5, 10, 50, 75, 100 and 500 µM of 1–8. (b) Concentration dependent DNA cleavage by 1–8; 300 ng of SC pUC19 DNA at different concentration of the complexes [1–500 µM in 10 mM phosphate buffer (pH 7.8) containing 1% DMF] was photo-irradiated with UVA at 350 nm for 3 h. Lanes 1–9: 1, 2.5, 5.0, 7.5, 10, 50, 75, 100 and 500 µM of 1–8. (b) Concentration dependent DNA cleavage by 1–8; 300 ng of SC pUC19 DNA at different concentration of the complexes [1–500 µM in 10 mM phosphate buffer (pH 7.8) containing 1% DMF] was photo-irradiated with UVA at 350 nm for 3 h. Lanes 1–9: 1, 2.5, 5.0, 7.5, 10, 50, 75, 100 and 500 µM of 1–8.
phosphate buffer (pH 7.8) containing 1% DMF] was photo-irradiated with UVA at 350 nm for 3 h. The net DNA cleavage percent was calculated using Eq.2. Inset shows a bar diagram representation of the net DNA cleavage of different complexes at 10 and 100 µM.

Fig. S14 Effect of DMF (10%) and ligands on the photo-induced cleavage of SC pUC19 DNA. 300 ng SC pUC19 DNA was photo-irradiated in presence of 10% DMF and various ligands (100 µM) with UVA at 350 nm for 3 h. Lane 1, DNA in presence of 10% DMF; Lane 2, DNA + H₂L¹; Lane 3, DNA + H₂L²; Lane 4, DNA + H₂L³; Lane 5, DNA + H₂L⁴; Lane 6, DNA + H₂L⁵; Lane 7, DNA + H₂L⁶.

Fig. S15 Gel diagram depicting cleavage of SC pUC19 DNA by 1–8 in presence of various additives in 50 mM Tris-HCl buffer (pH 8.0) containing 10% DMF. SC pUC19 DNA (300 ng) in the presence of various additives was photo-irradiated at 350 nm for 3 h with 1-8 (100 µM). The additive concentrations were: sodium azide (0.5 mM), L-histidine (0.5 mM), KI (0.5 mM) and D-mannitol (0.5 mM). Lane 1, DNA + complex; Lane 2, DNA + complex + sodium azide; Lane 3, DNA + complex + L-histidine; Lane 4, DNA + complex + KI; Lane 5, DNA + complex + D-mannitol.

Fig. S16 Cleavage of SC pUC19 DNA by 1–4 (a) and 5–8 (b) in presence of various additives in 50mM Tris-HCl buffer (pH 8.0) containing 10% DMF. SC pUC19 DNA (300 ng) in the presence of various additives was photo-irradiated at 350 nm for 3 h with 1-8 (100 µM). The additive concentrations were: sodium azide (0.5 mM), L-histidine (0.5 mM), KI (0.5 mM) and D-mannitol (0.5 mM).

Fig. S17 The plot represents the linear fit of log [(F₀-F)/F] vs log [Q] for 6 (a) and 7 (b) and the binding constant (K_{BSA}) was estimated using Eq.4. Here, [Q] stands for [quencher (complexes)].

Fig. S18 SDS-PAGE profile of cleavage of BSA in presence of complexes 1-8 (100 µM) in (a) UVA light of 350 nm (84 W) and (b) dark. Lane 1, Molecular marker; Lane 2, BSA only; Lane 3, BSA + 1 (100 µM); Lane 4, BSA + 2 (100 µM); Lane 5, BSA + 3 (100 µM); Lane 6, BSA + 4 (100 µM); Lane 7, BSA + 5 (100 µM); Lane 8, BSA + 6 (100 µM); Lane 9, BSA + 7 (100 µM); Lane 10, BSA + 8 (100 µM).

Fig. S19 Effect of ligand (H₂L³) on cell viability and growth: HeLa cells were treated with different concentrations of the test compound for 72 h and then cell viability was measured by MTT assay. Data reported as the mean ± S.D. for n = 6 and compared against 10% (v/v) DMF treated control by using a Student’s t-test. (*significant compared control).

Fig. S20 Study of apoptosis by morphological changes in nuclei of HeLa cells: HeLa cells, from control and treated groups, were fixed with 3.7% formaldehyde for 15 min, permeabilized with 0.1% Triton X-100 and stained with 1 µg/ml DAPI for 5 min at 37 °C. The cells were then washed with PBS and examined by fluorescence microscopy (Olympus IX 71) (200×). HeLa cells were treated with 225 µM of ligand (H₂L³). Arrows showing the morphological changes in nuclei of HeLa cells were observed on applying ligand (H₂L³) in comparison to the control group treated with 10% (v/v) DMF.

Fig. S21 ¹H NMR spectra of 1 (a), 5 (b), 6 (c) and 7 (d) in DMSO-d₆.

Fig. S22 Electronic absorption spectra of 7 (2.5 x 10⁻⁵ M) in DMF.

Fig. S23 FTIR spectra of complex 6.
Table S1: Summary of intermolecular interactions (A–H…B; Å, °) operating in the crystal structures of 3, 5-7.a

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>A–H</th>
<th>H…B</th>
<th>A…B</th>
<th>A–H…B</th>
<th>Symmetry operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>0.84</td>
<td>1.83</td>
<td>2.567(2)</td>
<td>146</td>
<td>x, y, z</td>
</tr>
<tr>
<td></td>
<td>H1O</td>
<td>N1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H6O</td>
<td>N3</td>
<td>0.84</td>
<td>1.83</td>
<td>2.571(2)</td>
<td>146</td>
<td>x, y, z</td>
</tr>
<tr>
<td>O1W</td>
<td>H1W1</td>
<td>O9</td>
<td>0.80</td>
<td>1.93</td>
<td>2.7126(19)</td>
<td>167</td>
<td>x, y, z</td>
</tr>
<tr>
<td>O1W</td>
<td>H1W2</td>
<td>O5</td>
<td>0.80</td>
<td>2.01</td>
<td>2.7486(19)</td>
<td>153</td>
<td>x, y, -1+z</td>
</tr>
<tr>
<td>O2W</td>
<td>H2W1</td>
<td>O3</td>
<td>0.80</td>
<td>2.09</td>
<td>2.886(2)</td>
<td>173</td>
<td>-1+x, y, -1+z</td>
</tr>
<tr>
<td>O2W</td>
<td>H2W2</td>
<td>O8W</td>
<td>0.80</td>
<td>2.04</td>
<td>2.817(2)</td>
<td>165</td>
<td>-1+x, y, z</td>
</tr>
<tr>
<td>O3W</td>
<td>H3W1</td>
<td>O7</td>
<td>0.80</td>
<td>2.24</td>
<td>2.972(2)</td>
<td>152</td>
<td>1-x, 1-y, -z</td>
</tr>
<tr>
<td>O3W</td>
<td>H3W1</td>
<td>O10</td>
<td>0.80</td>
<td>2.46</td>
<td>3.108(2)</td>
<td>139</td>
<td>1-x, 1-y, -z</td>
</tr>
<tr>
<td>O3W</td>
<td>H3W2</td>
<td>O9W</td>
<td>0.80</td>
<td>1.99</td>
<td>2.774(2)</td>
<td>165</td>
<td>x, y, z</td>
</tr>
<tr>
<td>O4W</td>
<td>H4W1</td>
<td>O8</td>
<td>0.80</td>
<td>2.06</td>
<td>2.831(2)</td>
<td>163</td>
<td>-1+x, y, z</td>
</tr>
<tr>
<td>O4W</td>
<td>H4W2</td>
<td>O7</td>
<td>0.80</td>
<td>2.31</td>
<td>3.088(2)</td>
<td>165</td>
<td>x, y, z</td>
</tr>
<tr>
<td>O5W</td>
<td>H5W1</td>
<td>O8W</td>
<td>0.80</td>
<td>1.97</td>
<td>2.736(2)</td>
<td>159</td>
<td>-1+x, y, z</td>
</tr>
<tr>
<td>O5W</td>
<td>H5W2</td>
<td>O2</td>
<td>0.80</td>
<td>2.14</td>
<td>2.937(2)</td>
<td>171</td>
<td>1-x, -y, 1-z</td>
</tr>
<tr>
<td>O6W</td>
<td>H6W1</td>
<td>O2</td>
<td>0.80</td>
<td>2.06</td>
<td>2.8552(19)</td>
<td>169</td>
<td>x, y, -1+z</td>
</tr>
<tr>
<td>O6W</td>
<td>H6W2</td>
<td>O3</td>
<td>0.80</td>
<td>2.39</td>
<td>3.079(2)</td>
<td>145</td>
<td>-1+x, y, -1+z</td>
</tr>
<tr>
<td>O6W</td>
<td>H6W2</td>
<td>O4</td>
<td>0.80</td>
<td>2.36</td>
<td>3.0187(19)</td>
<td>140</td>
<td>-1+x, y, -1+z</td>
</tr>
<tr>
<td>O7W</td>
<td>H7W1</td>
<td>O4</td>
<td>0.80</td>
<td>1.95</td>
<td>2.744(2)</td>
<td>173</td>
<td>x, y, -1+z</td>
</tr>
<tr>
<td>O7W</td>
<td>H7W2</td>
<td>O6W</td>
<td>0.80</td>
<td>2.04</td>
<td>2.825(2)</td>
<td>166</td>
<td>1-x, -y, -z</td>
</tr>
<tr>
<td>O8W</td>
<td>H8W1</td>
<td>O8</td>
<td>0.80</td>
<td>2.41</td>
<td>3.073(2)</td>
<td>141</td>
<td>x, y, z</td>
</tr>
<tr>
<td>O8W</td>
<td>H8W1</td>
<td>O9</td>
<td>0.80</td>
<td>2.27</td>
<td>2.959(2)</td>
<td>145</td>
<td>x, y, z</td>
</tr>
<tr>
<td>O8W</td>
<td>H8W2</td>
<td>O7W</td>
<td>0.80</td>
<td>1.97</td>
<td>2.760(2)</td>
<td>169</td>
<td>x, y, z</td>
</tr>
<tr>
<td>O9W</td>
<td>H9W1</td>
<td>O10</td>
<td>0.80</td>
<td>1.97</td>
<td>2.767(2)</td>
<td>178</td>
<td>x, y, z</td>
</tr>
<tr>
<td>O9W</td>
<td>H9W2</td>
<td>O2W</td>
<td>0.80</td>
<td>1.99</td>
<td>2.785(2)</td>
<td>171</td>
<td>1+x, y, z</td>
</tr>
</tbody>
</table>
C8 H8 O6 0.95 2.35 3.274(2) 165 1+x, y, z
C22 H22 O1 0.95 2.30 3.240(2) 168 x, y, z

5
O1W H1W1 O2 0.84(2) 2.43(3) 3.038(3) 130(2) x, y, z
O1W H1W1 O4 0.84(2) 2.48(2) 3.274(3) 159(2) x, y, z
O1W H1W2 O4 0.84(3) 1.89(2) 2.723(3) 170(3) 1-x, 1-y, 1-z
O2W H2W1 O6 0.85(3) 1.96(3) 2.776(3) 160(3) -x, -1+y, 1-z
O2W H2W2 O7 0.85(3) 2.15(3) 2.986(3) 171(2) x, -1+y, z

6
O1W H1W1 O1 0.85(3) 2.11(4) 2.931(3) 162(3) ½-x, ½+y, z
O1W H1W2 N1 0.837(18) 2.01(2) 2.815(3) 162(4) 1-x, -y, -z
C5 H5 O4 0.93 2.54 3.439(3) 164 1-x, -y, -z
C7' H72 Cg1 0.96 2.56 3.477(3) 159 1½-x, -½+y, z
O2W H2W2 O3 0.863(14) 2.44(5) 2.852(4) 110(4) ½-x, ½+y, z

The O2W-water molecule atom lies in a pocket comprising the O3 atom, see above, and the O1W (separation 3.313(2) Å),
O3 (3.261(2) Å) and O4 (3.364(2) Å) atoms.

Cg1 is the centroid of the (C8-C13) ring

7
O1W H1W1 O1 0.82(3) 2.17(3) 2.975(2) 165(2) x, y, z
O1W H1W2 O4W 0.83(3) 1.97(3) 2.787(2) 166(3) 1-x, -y, 2-z
O2W H2W1 O3 0.84(3) 2.08(3) 2.885(2) 162(3) -1+x, y, z
O2W H2W2 O4W 0.83(3) 1.98(3) 2.809(2) 173(3) x, y, z
O3W H3W1 O2W 0.83(3) 2.24(3) 3.015(3) 156(3) -x, -y, 2-z
O3W H3W2 N2 0.83(3) 2.26(3) 2.991(3) 147(3) 1-x, 1-y, 2-z
O4W H4W1 N1 0.834(13) 1.982(13) 2.808(2) 171(2) -1+x, -1+y, -1+z
O4W H4W2 O2 0.84(2) 2.06(2) 2.876(2) 166(2) x, y, z

5
Table S2 Binding Constant (K_b) values for the interaction of CT-DNA with ligands

<table>
<thead>
<tr>
<th>Complex</th>
<th>Binding Constant (K_b) *† (M$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2L^1</td>
<td>1.29×10^3</td>
</tr>
<tr>
<td>H_2L^2</td>
<td>7.74×10^3</td>
</tr>
<tr>
<td>H_2L^3</td>
<td>8.79×10^3</td>
</tr>
<tr>
<td>H_2L^4</td>
<td>3.82×10^3</td>
</tr>
<tr>
<td>H_2L^5</td>
<td>1.09×10^3</td>
</tr>
<tr>
<td>H_2L^6</td>
<td>4.57×10^3</td>
</tr>
</tbody>
</table>

DNA binding constant by UV-vis spectral method.
Fig. S2
Fig. S3
Fig. S4
Fig. S5
Fig. S6
Fig. S7
Absorbance (a.u) vs. Wavelength (nm)

Inset:

$\frac{[DNA]}{(\epsilon_a - \epsilon_f) \times 10^{-9} M}$ vs. $[DNA] \times 10^{-6} M$

Absorbance (a.u) vs. Wavelength (nm)
Fig. S8
Absorbance (a.u)

Wavelength (nm)

\[\text{[DNA]} / (\varepsilon_a - \varepsilon_f) \times 10^{-9} \text{ M} \]

\[\text{[DNA]} \times 10^{-6} \text{ M} \]
Fig. S10
Fig. S11
Fig. S12
Fig. S13

(a) Gel electrophoresis images showing Net DNA Cleavage (%).

(b) Graph depicting Net DNA Cleavage (%) against Complex (µM).

- Complex 1: Black squares
- Complex 2: Red circles
- Complex 3: Blue triangles
- Complex 4: Magenta inverted triangles
- Complex 5: Green diamonds
- Complex 6: Purple diamonds
- Complex 7: Magenta circles
- Complex 8: Purple circles
Fig. S14
Fig. S15
Fig. S16
Fig. S17
Fig. S18
Fig. S19

IC$_{50}$: 231.5 ± 5.4

[Graph showing cell viability vs. concentration with data points marked as * for significance]
Fig. S20
Fig. S21