Electronic Supplementary Information

for

Highly Fluorinated Hydrotris(indazolyl)borate Calcium Complexes: Structure and Reactivity Heavily Depend on the Ligand Electronic Properties

Nuria Romero, Laure Vendier, Chiara Dinoi and Michel Etienne

a CNRS, LCC (Laboratoire de Chimie de Coordination), BP 44099, 205 route de Narbonne, F-31077 Toulouse Cedex 4, France.
b Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse Cedex 4, France.

Content

19F NMR spectrum of [Ca(F12-Tp4Bo,3Ph)2] (1)
Series of 19F NMR spectra of [(F12-Tp4Bo,3Ph)CaI(THF)] (2)
19F NMR spectrum of [Ca(THF)6][F12-Tp4Bo,3Ph]2 (3)
ORTEP drawing of [Ca(THF)6][F12-Tp4Bo,3Ph]2 (3)
Figure S1: 19F NMR spectrum of $[\text{Ca(F}_{12}\text{-Tp}^{(4\text{Bo},3\text{Ph})^2})_2]$ (1) in acetone-d_6 highlighting the 2:1 ratio for each type of fluorine.
Figure S2a: 19F NMR spectrum of [(F$_{12}$-Tp4Bo,3Ph)Ca(THF)] (2) in THF: crude reaction mixture after elimination of TII affording an equilibrating mixture of (F$_{12}$-Tp4Bo,3Ph)Ca(THF)$_x$ species.
Figure S2b: 19F NMR spectrum of [(F$_{12}$-Tp4Bo,3Ph)Ca(THF)] (2) in a THF-acetone-d_6 mixture. Same sample as Figure S2a with a more concentrated THF solution. Further concentration yields the spectrum in Figure S2c.
Figure S2c: 19F NMR spectrum of (acetone-d_6) [(F$_{12}$-Tp4B0,3Ph)CaI(THF)] (2). Same sample as Figure S2a and S2b after complete removing of THF showing the presence of 2 (from irreversible Schlenk equilibrium), 1 and indazole (IndH).
Figure S3: 19F NMR spectra of $[\text{Ca(THF)}_6][\text{F}_{21}-\text{Tp}^{4\text{Bo},3\text{CF}_3}]_2$ (3), $\text{Na[F}_{21}-\text{Tp}^{4\text{Bo},3\text{CF}_3}]$ and $\text{Tl[F}_{21}-\text{Tp}^{4\text{Bo},3\text{CF}_3}]$ in acetone-d_6.
Figure S4. ORTEP drawing of $[\text{Ca(THF)}_6][\text{F}_{21}\text{-Tp}^{\text{aBo,CF}}]_2$ (3).