Electronic Supplemental Information

Self-assembly of a family of suprametallomacrocycles: revisiting an o-carborane bisterpyridyl building block

James M. Ludlow III,a A. N. Masato Tominaga,d Yoshiki Chujo,d Anthony Schultz,b Xiaocun Lu,a Tingzheng Xie,a Kai Gao,a Charles N. Moorefield,c Chrys Wesdemiotis,*a,b and George R. Newkome*a,b

aDepartment of Polymer Science, bDepartment of Chemistry, and cThe Maurice Morton Institute for Polymer Science The University of Akron, Akron, OH 44325-4717 USA Tel: 330-972-6458
dDepartment of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan. Tel: +81-75-383-2604

E-mail: newkome@uakron.edu, wesdemiotis@uakron.edu

Table of Contents

1. 2D NMR Spectra .. S2
2. ESI-MS and ESI-TWIM-MS, data .. S5
3. Isotope patterns .. S7
4. van’t Hoff plot and table .. S10
1. 2D NMR Spectra

Figure S1. COSY for bisterpyridyl o-carborane (1)
Figure S2. COSY for ZnC2-C3 mixture, aromatic region

Figure S3. COSY for FeC2, aromatic region
Figure S4. COSY for FeC3, aromatic region

Figure S5. NOESY for FeC3, aromatic region

NOESY
M(II) = Fe
2. ESI-MS and ESI-TWIM-MS data

Figure S6. ESI-MS plot of FeC3

Figure S7. ESI-TWIM-MS plot (m/z vs. drift time) for FeC3 at a traveling wave velocity of 350 m/s and a traveling wave height of 7.5V.
Figure S8. ESI-TWIM-MS plot (m/z vs. drift time) for ZnC2 at a traveling wave velocity of 350 m/s and a traveling wave height of 7.5V
3. Isotope patterns

ZnC₄ 3+

3+ Theoretical

3+ Experimental

Figure S9. Isotope pattern for ZnC₄ charge state 3+.
Figure S10. Isotope patterns for ZnC3 charge states 4+ and 5+.
Figure S11. Isotope patterns for ZnC2 charge states 2+, 3+, and 4+.
4. van’t Hoff plot and table

<table>
<thead>
<tr>
<th>Set</th>
<th>T(K)</th>
<th>T(K)</th>
<th>3'5' dimer</th>
<th>3'5' outer</th>
<th>Dimer mol frac</th>
<th>outer mol frac</th>
<th>K</th>
<th>1/T</th>
<th>lnK</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>345.521</td>
<td>1</td>
<td>0.83</td>
<td>0.64</td>
<td>0.36</td>
<td>2.1</td>
<td>0.0029</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>333</td>
<td>335.44</td>
<td>1</td>
<td>0.85</td>
<td>0.64</td>
<td>0.36</td>
<td>2.0</td>
<td>0.0030</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>323</td>
<td>325.359</td>
<td>1</td>
<td>0.92</td>
<td>0.62</td>
<td>0.38</td>
<td>1.6</td>
<td>0.0031</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>315.278</td>
<td>1</td>
<td>0.97</td>
<td>0.61</td>
<td>0.39</td>
<td>1.5</td>
<td>0.0032</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>305.197</td>
<td>1</td>
<td>1.06</td>
<td>0.59</td>
<td>0.41</td>
<td>1.2</td>
<td>0.0033</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>295.116</td>
<td>1</td>
<td>1.12</td>
<td>0.57</td>
<td>0.43</td>
<td>1.0</td>
<td>0.0034</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>285.035</td>
<td>1</td>
<td>1.17</td>
<td>0.56</td>
<td>0.44</td>
<td>0.9</td>
<td>0.0035</td>
<td>-0.1</td>
<td></td>
</tr>
</tbody>
</table>

Figure S12. Column 2 contains temperature values calculated from the temperature calibration curve’s regression equation.

Figure S13. van’t Hoff plot
Figure S14. Temperature calibration curve.